Research Outputs

2023 2023 2022 2022 2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 2016 2016 2015 2015 2014 2014 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0
Now showing 1 - 10 of 33
  • Publication
    Reevaluation of energy use in wheat production in the United States
    (Wiley, 2006) ;
    Steinberg, Laura J. 
    Energy budgets for agricultural production can be used as building blocks for life‐cycle assessments that include agricultural products, and can also serve as a first step toward identifying crop production processes that benefit most from increased efficiency. A general trend toward increased energy efficiency in U.S. agriculture has been reported. For wheat cultivation, in particular, this study updates cradle‐to‐gate process analyses produced in the seventies and eighties. Input quantities were obtained from official U.S. statistics and other sources and multiplied by calculated or recently published energy coefficients. The total energy input into the production of a kilogram of average U.S. wheat grain is estimated to range from 3.1 to 4.9 MJ/kg, with a best estimate at 3.9 MJ/kg. The dominant contribution is energy embodied in nitrogen fertilizer at 47% of the total energy input, followed by diesel fuel (25%), and smaller contributions such as energy embodied in seed grain, gasoline, electricity, and phosphorus fertilizer. This distribution is reflected in the energy carrier mix, with natural gas dominating (57%), followed by diesel fuel (30%). High variability in energy coefficients masks potential gains in total energy efficiency as compared to earlier, similar U.S. studies. Estimates from an input‐output model for several input processes agree well with process analysis results, but the model's application can be limited by aggregation issues: Total energy inputs for generic food grain production were lower than wheat fertilizer inputs alone, possibly due to aggregation of diverse products into the food grain sector.
      42  2Scopus© Citations 61
  • Publication
    Erratum to: Effects of the Antibiotics Chlortetracycline and Enrofloxacin on the Anaerobic Digestion in Continuous Experiments(Bioenerg. Res., (2014), DOI 10.1007/s12155-014-9458-0)
    (Springer, 2016)
    Bauer, Alexander 
    ;
    Lizasoain, Javier 
    ;
    Nettmann, Edith 
    ;
    Bergmann, Ingo 
    ;
    Mundt, Kerstin 
    ;
    Klocke, Michael 
    ;
    Rincón, Maria 
    ;
    Amon, Thomas 
    ;
    ;
    Winckler, Christoph 
    The original version of this article unfortunately contained mistakes in the authorship. The author’s name, “ Christoph Winckler ” as the 10th author, is missing. The correct version is presented above.
      68  1Scopus© Citations 1
  • Publication
    Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene
    (American Chemical Society, 2008)
    Zhan, Jingjing 
    ;
    Zheng, Tonghua 
    ;
    ;
    Day, Christopher 
    ;
    McPherson, Gary L. 
    ;
    Lu, Yunfeng 
    ;
    Papadopoulos, Kyriakos D. 
    ;
    John, Vijay T. 
    Effective in situ remediation of groundwater requires the successful delivery of reactive iron particles through soil. In this paper we report the transport characteristics of nanoscale zerovalent iron entrapped in porous silica particles and prepared through an aerosol-assisted process. The entrapment of iron nanoparticles into the silica matrix prevents their aggregation while maintaining the particlesʼ reactivity. Furthermore, the silica particles are functionalized with alkyl groups and are extremely efficient in adsorbing dissolved trichloroethylene (TCE). Because of synthesis through the aerosol route, the particles are of the optimal size range (0.1−1 μm) for mobility through sediments. Column and capillary transport experiments confirm that the particles move far more effectively through model soils than commercially available uncoated nanoscale reactive iron particles. Microcapillary experiments indicate that the particles partition to the interface of TCE droplets, further enhancing their potential for dense non-aqueous-phase liquid source-zone remediation.
      48  1Scopus© Citations 172
  • Publication
    Delivery and targeting of functional aerosol particle in DNAPL remediation
    (American Chemical Society, 2008)
    Zhan, Jingjing 
    ;
    Day, Christopher 
    ;
    ;
    McPherson, Gary L. 
    ;
    Lu, Yunfeng 
    ;
    Papadopoulos, Kyriakos D. 
    ;
    John, Vijay T. 
      49  1
  • Publication
    Life Cycle Assessment of Biogas Production from Unused Grassland Biomass Pretreated by Steam Explosion Using a System Expansion Method
    (MDPI, 2020)
    Kral, Iris 
    ;
    ;
    Saylor, Molly K. 
    ;
    Lizasoain, Javier 
    ;
    Gronauer, Andreas 
    ;
    Bauer, Alexander 
    Reforestation is a threat to permanent grasslands in many alpine regions. Using these areas to produce biogas energy may help to preserve these important landscapes and save fossil fuels by adding a renewable local heat and electricity source. This case study compares (a) a status quo (SQ) reference scenario with heating oil, wood-chips, and grid electricity as municipal energy sources, and (b) a hypothetical local biogas (LB) scenario (to also be used as a municipal energy source) based on a 500-kWel biogas plant with steam explosion pretreatment. Here, hay from previously unused grassland is the main biogas substrate, whereas, in the reference SQ scenario, these grasslands remain unused. Life cycle assessment (LCA) results for LB and SQ scenarios are significantly different at p < 0.05 in all six impact categories. In three categories, the LB scenario has lower impacts than the SQ scenario, including climate change (0.367 CO2-eq kWhel-1 versus 0.501 CO2-eq kWhel-1). Dominant contributions to climate change in the SQ scenario are from the extant municipal energy sources that the LB biogas plant would replace; in the LB scenario, important contributions include unburned methane from the biogas plant, as well as CO2 emissions from hay production machines. In summary, important environmental impacts can be reduced and alpine grasslands can be preserved by biogas production from that grass. The advantages of integrating a local biogas plant in municipal energy and waste systems depend strongly on the extant municipal energy system characteristics.
      140  1Scopus© Citations 6
  • Publication
    Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons
    (American Chemical Society, 2011)
    Zhan, Jingjing 
    ;
    Kolesnichenko, Igor 
    ;
    Sunkara, Bhanukiran 
    ;
    He, Jibao 
    ;
    McPherson, Gary L. 
    ;
    ;
    John, Vijay T. 
    Spherical iron-carbon nanocomposites were developed through a facile aerosol-based process with sucrose and iron chloride as starting materials. These composites exhibit multiple functionalities relevant to the in situ remediation of chlorinated hydrocarbons such as trichloroethylene (TCE). The distribution and immobilization of iron nanoparticles on the surface of carbon spheres prevents zerovalent nanoiron aggregation with maintenance of reactivity. The aerosol-based carbon microspheres allow adsorption of TCE, thus removing dissolved TCE rapidly and facilitating reaction by increasing the local concentration of TCE in the vicinity of iron nanoparticles. The strongly adsorptive property of the composites may also prevent release of any toxic chlorinated intermediate products. The composite particles are in the optimal range for transport through groundwater saturated sediments. Furthermore, those iron-carbon composites can be designed at low cost, the process is amenable to scale-up for in situ application, and the materials are intrinsically benign to the environment.
      52  1Scopus© Citations 74
  • Publication
    Implementing an advanced waste separation step in an MBT plant: assessment of technical, economic and environmental impacts
    Heavy fractions resulting from mechanical treatment stages of mechanical–biological waste treatment plants are posing very specific demands with regard to further treatment (large portions of inert and high-caloric components). Based on the current Austrian legal situation such a waste stream cannot be landfilled and must be thermally treated. The aim of this research was to evaluate if an inert fraction generated from this waste stream with advanced separation technologies, two sensor-based [near-infrared spectroscopy (NIR), X-ray transmission (XRT)] and two mechanical systems (wet and dry) is able to be disposed of. The performance of the treatment options for separation was evaluated by characterizing the resulting product streams with respect to purity and yield. Complementing the technical evaluation of the processing options, an assessment of the economic and global warming effects of the change in waste stream routing was conducted. The separated inert fraction was evaluated with regard to landfilling. The remaining high-caloric product stream was evaluated with regard to thermal utilization. The results show that, in principal, the selected treatment technologies can be used to separate high-caloric from inert components. Limitations were identified with regard to the product qualities achieved, as well as to the economic expedience of the treatment options. One of the sensor-based sorting systems (X-ray) was able to produce the highest amount of disposeable heavy fraction (44.1%), while having the lowest content of organic (2.0% Cbiogenic per kg waste input) components. None of the high-caloric product streams complied with the requirements for solid recovered fuels as defined in the Austrian Ordinance on Waste Incineration. The economic evaluation illustrates the highest specific treatment costs for the XRT (€23.15 per t), followed by the NIR-based sorting system (€15.67 per t), and the lowest costs for the air separation system (€10.79 per t). Within the ecological evaluation it can be shown that the results depend strongly on the higher heating value of the high caloric light fraction and on the content of Cbiogenic of the heavy fraction. Therefore, the XRT system had the best results for the overall GWP [−14 kg carbon dioxide equivalents (CO2eq) per t of input waste] and the NIR-based the worst (193 kg CO2 eq per t of input waste). It is concluded that three of the treatment options would be suitable under the specific conditions considered here. Of these, sensor-based sorting is preferable owing to its flexibility.
      177  1Scopus© Citations 2
  • Publication
    Effects of working depth and wheel slip on fuel consumption of selected tillage implements
    (International Commission of Agricultural Engineering, 2014)
    Moitzi, Gerhard 
    ;
    Wagentristl, Helmut 
    ;
    Refenner, Karl 
    ;
    Weingartmann, Herbert 
    ;
    ;
    Boxberger, Josef 
    ;
    Gronauer, Andreas 
    Rising fossil fuel prices are leading to an increasing awareness of energy efficiency in plant production. Tillage in particular can consume large amounts of fuel. For four tillage implements (reversible mouldboard plough, short disc harrow, universal-cultivator, subsoiler), this study quantifies the effect of different working depths on fuel consumption, wheel slip, field capacity and specific energy consumption. A four-wheel drive tractor (92 kW) was equipped with a data-acquisition system for engine speed, vehicle speed, wheel speed and fuel consumption. Fuel consumption was measured in the fuel system with an integrated high-precision flow-meter. The results show that the area-specific fuel consumption increased linearly with working depth for both the mouldboard plough and the short disc harrow, but disproportionately for the subsoiler. Wheel slip was found to increase fuel consumption and decrease field capacity performance at all depths. The influence of the engine speed was shown in a separate experiment with a universal-cultivator. Increasing the engine speed from 1,513 r min-1 to 2,042 r min-1 results in an increase of 80% for the fuel consumption rate (L/h) and 35% for the area-specific fuel consumption (L/ha). Future measurement of drawbar pull will allow a more detailed analysis of the energy efficiency losses at the engine, the transmission, and at the wheel/soil interface.
      57  1
  • Publication
    Transport and partitioning of functional aerosol nanoparticles for remediation of trichloroethylene
    (AIChE, 2007-11-05)
    Zhan, Jingjing 
    ;
    Zheng, Tonghua 
    ;
    ;
    McPherson, Gary L. 
    ;
    Lu, Yunfeng 
    ;
    Papadopoulos, Kyriakos D. 
    ;
    John, Vijay T. 
    Effective in-situ remediation of contaminated groundwater plume requires the successful delivery of reactive iron particles through soil. This study reports the transport characteristics of nanoscale zerovalent iron particles that are encapsulated in porous silica submicron particles through a novel aerosol-assisted technology. These particles resist aggregation characteristics that are typical of nanoscale zerovalent iron, and are highly reactive. They can be transported through model soils (Ottawa sands) more efficiently than commercially available reactive nanoscale iron particle (RNIP). To explore the fate of particles in sands, macroscopic and microscopic methods were used. Glass burette columns in vertical and horizontal configurations were used to simulate in-situ injection and natural groundwater situations, respectively. In both cases, the composite particles elute readily while RNIP is trapped at the inlet of the column. Capillary experiments further prove that RNIP clogs the pores between sand grains due to rapid aggregation, but pore plugging does not occur for the composite particles. The partitioning characteristic of the particles was investigated by a novel capillary video microscopy technique. Our results again indicate that the iron/silica composite nanparticles preferentially accumulate and localize at the TCE/water interface, making dechlorination more efficient. Such particles with enhanced mobility hold promise in new technologies for in-situ ground water remediation.
      39  1
  • Publication
    Environmental hot spot analysis in agricultural lifecycle assessments – three case studies
    (University of Zagreb, 2016) ;
    Bauer, Alexander 
    ;
    Gronauer, Andreas 
    ;
    Saylor, Molly K. 
    ;
    Stampfel, Angelika 
    ;
    Kral, Iris 
    Scopus© Citations 5  82  1