Research Outputs

2023 2023 2022 2022 2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 2016 2016 2015 2015 2014 2014 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0
Now showing 1 - 10 of 17
  • Publication
    Accelerated mechanical fatigue interconnect testing method for heavy wire bonds in power modules
    (2017-05-11)
    Every new development in device performance and packaging design, due to new materials and design changes can influence the device reliability drastically. High performance and high reliability demands in power electronics over several decades and a short time to market development, raise the need for very fast reliability testing methods. In this study a mechanical fatigue testing method is presented for evaluating the interfacial fatigue resistance of heavy Al wire bonded interconnects in high power modules. By separating the concurrent thermal, mechanical and environmental failure mechanisms a selective investigation of the desired failure mode is possible. The setup is designed to reproduce the thermo-mechanical shear stresses by mechanical means, while provoking the same lift-off failure mode as in power cycling tests. With a frequency variable test setup of a few Hz up to several kHz, measurements from 1E3 up to 1E8 and determining the influence of the testing frequency on the fatigue life were possible.
      55  1
  • Publication
    Simulation of stress concentrations in wire-bonds using a novel strain gradient theory
    (Elsevier, 2013-04-14) ;
    Lederer, Martin 
    ;
    Nagl, Bernhard 
    ;
    Trnka, A. 
    ;
    Khatibi, Golta 
    ;
    Thoben, Markus 
    Fatigue failure of wire-bonds is one of the key factors limiting the lifetime of power electronic devices. In IGBT (insulated gate bipolar transistor) modules, wire-bonds are exposed to repeated temperature changes leading to thermo-mechanical stresses in the constituent materials. Due to the geometry, stress concentrations arise at the interfaces of aluminum wires and silicon chips. In the framework of classical continuum mechanics, these stress concentrations show the characteristics of stress singularities. Nevertheless, IGBT modules reach lifetimes of about 30 years under service conditions. Therefore, it seems that classical continuum mechanics exaggerates the stress concentrations occurring at the material transitions. Hence, it is the subject of the present investigation to calculate more realistic stress distributions using a novel strain gradient theory.
      38  1Scopus© Citations 1
  • Publication
    In situ vibration measurements on power modules under operating conditions
    (Elsevier, 2012-04-16) ;
    Nagl, Bernhard 
    ;
    Lederer, Martin 
    ;
    Trnka, A. 
    ;
    Khatibi, Golta 
    ;
    Thoben, Markus 
    The subject of this investigation was determination of thermo-mechanically induced displacement of the components inside a power module under operation conditions. It is well known that lifetime of insulated gate bipolar transistor (IGBT) modules is limited by thermo-mechanical fatigue. Wire bonded interconnects inside the IGBTs count as critical sites where crack initiation and failure is observed. In this study the temperature dependent periodic deformation of wire-bonds under operating conditions was determined by using a laser Doppler vibrometer (LDV) and thermal imaging camera. Furthermore finite element analyses (FEA) were conducted to obtain the strain values needed for lifetime assessments.
      43  1Scopus© Citations 6
  • Publication
    Fatigue life time modelling of Cu and Au fine wires
    (2018-05-25) ;
    Khatibi, Golta 
    ;
    Mazloum-Nejadari, Ali 
    ;
    Delshadmanesh, Mitra 
    ;
    Lederer, Martin 
    In this study, the influence of microstructure on the cyclic behaviour and lifetime of Cu and Au wires with diameters of 25μm in the low and high cycle fatigue regimes was investigated. Low cycle fatigue (LCF) tests were conducted with a load ratio of 0.1 and a strain rate of ~2e-4. An ultrasonic resonance fatigue testing system working at 20 kHz was used to obtain lifetime curves under symmetrical loading conditions up to very high cycle regime (VHCF). In order to obtain a total fatigue life model covering the low to high cycle regime of the thin wires by considering the effects of mean stress, a four parameter lifetime model is proposed. The effect of testing frequency on high cycle fatigue data of Cu is discussed based on analysis of strain rate dependency of the tensile properties with the help of the material model proposed by Johnson and Cook.
      70  1Scopus© Citations 9
  • Publication
    Towards adequate qualification testing of electronic products: Review and extension
    (Elsevier, 2014-12-03) ;
    Khatibi, Golta 
    ;
    Lederer, Martin 
    ;
    Magnien, Julien 
    ;
    Suhir, Ephraim 
    ;
    Nicolics, Johann 
    Electronic product manufacturers are constantly seeking efficient, cost-effective and trustworthy accelerated test (AT) methods to keep up with the today's market demands. At present, accelerated temperature cycling testing is viewed as the state of the art for reliability assessment of electronic products. Accelerated mechanical fatigue testing has been proposed recently as a novel concept and an attractive cost-effective and time-saving qualification alternative for electronic devices. The principle idea of this approach is replacement of thermally induced loading with equivalent and adequate mechanical loading. Using mechanical fatigue testing set-ups, the devices under test can be subjected to single or multi-axial cyclic loading conditions at high frequencies. As a result, physically meaningful lifetime curves can be obtained. The suggested methodologies and procedures enable one to detect the vulnerable sites of the devices in a very short time. Exemplary results for power semiconductor products demonstrate the applicability of the proposed method for qualification of first and second level interconnects. The advantages and limitations of the proposed concept are addressed and discussed in detail.
      41  1
  • Publication
    Loop formation effects on the lifetime of wire bonds for power electronics
    (2020-03-24) ;
    Ribbeck, Hans-Georg von 
    ;
    Doehler, Torsten 
    ;
    Khatibi, Golta 
    ;
    Geissler, Ute 
    In the present work, the influence of loop forming aspects on the reliability of US-bonded aluminium heavy wires was studied, combining three measurement techniques, for the first time: Laser confocal microscopy based wrinkling characterization, accelerated lifetime measurements BAMFIT and destructive pull tests. The focus of this study was the systematic investigation of the heel region of the wire bond depending on process parameters and especially on the loop geometry regarding durability and lifetime. As first results, effects reducing durability were identified which are not apparent in normal testing and a recommendation for the use of reverse movements can be given.
      69  1
  • Publication
    Electro-thermal analysis of in situ vibration measurements on IGBT modules under operation conditions
    (Elsevier, 2012-09-17) ;
    Nagl, Bernhard 
    ;
    Lederer, Martin 
    ;
    Khatibi, Golta 
    ;
    Thoben, Markus 
    ;
    Nicolics, Johann 
    This paper discusses different application relevant electrical loading cases of an IGBT module of a power inverter. Thereby, different operation conditions such as pulse frequencies, inverter output currents and output frequencies, as well as two different operation modes are discussed. Each load case investigation is conducted by electrical, thermal, and in situ vibration measurements. Moreover, on the base of finite element analyses a deeper insight is gained into reliability relevant thermo-mechanical behavior. For this purpose an IGBT module is operated at a load of 30% to 80% of its nominal value in order to cause representative thermo-mechanical displacements of dies and bond wires. By applying an inverter output frequency in a range of 1 to 280 Hz a temperature ripple of up to 40 K on the dies and a vertical displacement of up to 9 μm on a bond wire is observed. These results are important to improve life-time-predictions.
      44  1Scopus© Citations 3