Publications

2019 2019 2018 2018 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0
Now showing 1 - 5 of 5
  • Publication
    Towards a Security Cost Model for Cyber-Physical Systems
    (IEEE, 2019-01) ;
    Mauthe, Andreas 
    ;
    In times of Industry 4.0 and cyber-physical systems (CPS) providing security is one of the biggest challenges. A cyber attack launched at a CPS poses a huge threat, since a security incident may affect both the cyber and the physical world. Since CPS are very flexible systems, which are capable of adapting to environmental changes, it is important to keep an overview of the resulting costs of providing security. However, research regarding CPS currently focuses more on engineering secure systems and does not satisfactorily provide approaches for evaluating the resulting costs. This paper presents an interaction-based model for evaluating security costs in a CPS. Furthermore, the paper demonstrates in a use case driven study, how this approach could be used to model the resulting costs for guaranteeing security.
      468Scopus© Citations 4
  • Publication
    Towards a Security-Aware Benchmarking Framework for Function-as-a-Service
    In a world, where complexity increases on a daily basis the Function-as-a-Service (FaaS) cloud model seams to take countermeasures. In comparison to other cloud models, the fast evolving FaaS increasingly abstracts the underlying infrastructure and refocuses on the application logic. This trend brings huge benefits in application and performance, but comes with difficulties for benchmarking cloud applications. In this position paper, we present an initial investigation of benchmarking FaaS in close to reality production systems. Furthermore, we outline the architectural design including the necessary benchmarking metrics. We also discuss the possibility of using the proposed framework for identifying security vulnerabilities.
      229Scopus© Citations 3
  • Publication
    A Framework for Measuring the Costs of Security at Runtime
    (SCITEPRESS, 2019) ; ; ;
    Mauthe, Andreas 
    ;
    In Industry 4.0, Cyber-Physical Systems (CPS) are formed by components, which are interconnected with each other over the Internet of Things (IoT). The resulting capabilities of sensing and affecting the physical world offer a vast range of opportunities, yet, at the same time pose new security challenges. To address these challenges there are various IoT Frameworks, which offer solutions for managing and controlling IoT-components and their interactions. In this regard, providing security for an interaction usually requires performing additional security-related tasks (e.g. authorisation, encryption, etc.) to prevent possible security risks. Research currently focuses more on designing and developing these frameworks and does not satisfactorily provide methodologies for evaluating the resulting costs of providing security. In this paper we propose an initial approach for measuring the resulting costs of providing security for interacting IoT-components by using a Security Cost Modell ing Framework. Furthermore, we describe the necessary building blocks of the framework and provide an experimental design showing how it could be used to measure security costs at runtime.
      537Scopus© Citations 2
  • Publication
    Function-as-a-Service Benchmarking Framework
    Cloud Service Providers deliver their products in form of ”as-a-Service”, which are typically categorized by the level of abstraction. This approach hides the implementation details and shows only functionality to the user. However, the problem is that it is hard to measure the performance of Cloud services, because they behave like black boxes. Especially with Function-as-a-Service it is even more difficult because it completely hides server and infrastructure management from users by design. Cloud Service Prodivers usually restrict the maximum size of code, memory and runtime of Cloud Functions. Nevertheless, users need clarification if more ressources are needed to deliver services in high quality. In this regard, we present the architectural design of a new Function-as-a-Service benchmarking tool, which allows users to evaluate the performance of Cloud Functions. Furthermore, the capabilities of the framework are tested on an isolated platform with a specific workload. The results show that users are able to get insights into Function-as-a-Service environments. This, in turn, allows users to identify factors which may slow down or speed up the performance of Cloud Functions.
      509Scopus© Citations 1
  • Publication
    On the Cost of Security Compliance in Information Systems
    (International Institute of Informatics and Systemics, 2019) ; ; ;
    Aldrian, Andreas 
    ;
    The onward development of information and communication technology has led to a new industrial revolution called Industry 4.0. This revolution involves Cyber-Physical Production Systems (CPPS), which consist of intelligent Cyber-Physical Systems that may be able to adapt themselves autonomously in a production environment. At the moment, machines in industrial environments are often not connected to the internet, which thus needs a point-to-point connection to access the device if necessary. Through Industry 4.0, these devices should enable remote access for smart maintenance through a connection to the outside world. However, this connection opens the gate for possible cyber-attacks and thus raises the question about providing security for these environments. Therefore, this paper used an adapted approach based on SixSigma to solve this security problem by investigating security standards. Security requirements were gathered and mapped to controls from well known security standards, formed into a catalog. This catalog includes assessment information to check how secure a solution for a use case is and also includes a link to an estimation method for implementation cost. Thus this paper’s outcome shows how to make Industry 4.0 use cases secure by fulfilling security standard controls and how to estimate the resulting implementation costs.
      570  2516