Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.11790/1332
DC FieldValueLanguage
dc.contributor.authorMaksuti, Siliade_at
dc.contributor.authorSchluga, Oliverde_at
dc.contributor.authorSettanni, Giuseppede_at
dc.contributor.authorTauber, Markusde_at
dc.contributor.authorDelsing, Jerkerde_at
dc.date.accessioned2020-02-12T21:15:59Z-
dc.date.available2020-02-12T21:15:59Z-
dc.date.issued2019-02-
dc.identifier.urihttp://hdl.handle.net/20.500.11790/1332-
dc.description.abstractManufacturing enterprises are constantly exploring new ways to improve their own production processes to address the increasing demand of customized production. However, such enterprises show a low degree of flexibility, which mainly results from the need to configure new production equipment at design and run time. In this paper we propose self-adaptation as an approach to improve data transmission flexibility in Industry 4.0 environments. We implement an autonomic manager using a generic autonomic management framework, which applies the most appropriate data transmission configuration based on security and business process related requirements, such as performance. The experimental evaluation is carried out in a MQTT infrastructure and the results show that using self-adaptation can significantly improve the trade-off between security and performance. We then propose to integrate anomaly detection methods as a solution to support self-adaptation by monitoring and learning the normal behavior of an industrial system and show how this can be used by the generic autonomic management framework.de_at
dc.language.isoende_at
dc.publisherIEEEde_at
dc.relationProductive 4.0-
dc.rightsinfo:eu-repo/semantics/closedAccess-
dc.subjectproduct customisationde_at
dc.subjectproduction engineering computingde_at
dc.subjectproduction equipmentde_at
dc.subjectsecurity of datade_at
dc.titleSelf-Adaptation Applied to MQTT via a Generic Autonomic Management Frameworkde_at
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeKonferenzbeitragde_at
dc.relation.conference20th IEEE International Conference on Industrial Technology-
dc.identifier.doi10.1109/ICIT.2019.8754937-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeinfo:eu-repo/semantics/conferenceObject-
item.openairetypeKonferenzbeitrag-
item.fulltextNo Fulltext-
crisitem.author.deptInformationstechnologie und Informationsmanagement-
crisitem.author.orcid0000-0002-4133-3317-
crisitem.author.parentorgFH Burgenland-
crisitem.project.funderEuropean Commission-
crisitem.project.openAireinfo:eu-repo/grantAgreement/EC/H2020/737459/EU-
Appears in Collections:Informationstechnologie und Informationsmanagement
SFX Query Show simple item record

SCOPUSTM   
Citations

1
checked on Sep 20, 2021

Page view(s) 10

420
Last Week
1
Last month
0
checked on Sep 22, 2021

Google ScholarTM

Check

Altmetric

Altmetric
Dimensions


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.