Research Outputs

2020 2020 2019 2019 2018 2018 2017 2017 2016 2016 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8 2.0 2.0
Now showing 1 - 6 of 6
  • Publication
    Exponential pattern recognition for deriving air change rates from CO2 data
    (Institute of Electrical and Electronics Engineers (IEEE), 2017) ; ; ;
    Mateis, Cristinel 
    ;
    Dejan, Nickovic 
    A novel procedure for automated determination of air change rates from measured indoor CO2 concentrations is proposed. The suggested approach builds upon a new algorithm to detect exponential build-up and decay patterns in CO2 concentration time series. The feasibility of the concept is proved with a test run on synthetic data that shows a good reproduction of the previously defined air change distribution. The demonstration continues with test runs on CO2 datasets measured in the kitchen and the sleeping room of two residential buildings. The derived air change rates were within the expected distributions and ranges in both cases when natural or mechanical ventilation was used.
      255  53368Scopus© Citations 3
  • Publication
    Complex glass facade modelling for Model Predictive Control of thermal loads: impact of the solar load identification on the state-space model accuracy
    Above and beyond improving the efficiency of the building envelope and the energy supply system, the demand-side flexibility in terms of load shifting and peak reduction are vital factors in further increasing the share of volatile renewable energy sources. The thermal activation of building components, like floors and ceilings, enables the cost-effective potential for short-term energy storage to fulfil these requirements. In order to exploit the storage capabilities of active building systems, a reliable model predicted control (MPC) approach is required. However, primarily if a large glass façade element is utilised, the appropriate modelling of solar loads is critical for an effective MPC operation. Hence, based on a dynamic building simulation tool, a characteristic map for the solar load prediction of a glass façade system in combination of external venetian blinds was generated to enhance the state-space model approach for the MPC algorithm. The comparison with a conventional state-space model approach shows the integration of a detailed characteristic map can only marginally improve the prediction accuracy. The additional information required from the glass façade manufacturer and the associated simulation effort is not of substantial value. In contrast, the conventional grey box model enables an entirely datadriven parameter identification, without the manufacturers’ data. Furthermore, the MPC optimisation procedure, searching for the best control strategy, can be more efficient (solver-based optimisation), with shorter computing turnaround times.
      190  1528
  • Publication
    System efficiency of PVT-collector driven heat pumps
    (EDP Sciences, 2019)
    Hengel, Franz 
    ;
    ; ;
    Standard heat pump (HP) systems with horizontal ground heat exchangers (HGHE) are commonly designed based on arbitrary knowledge gained over time and the use of the rule of thumb. Where an undersizing of the HGHE occurs, the HP efficiencies are lowered. Undersizing could result as a consequence of underestimating the soils thermal conductivity. Therefore, this paper considers the combined photovoltaic and solar thermal (PVT) collectors as an extension to standard HP heating systems with a HGHE in single-family houses with the possibility of improving the COP of the HP at a later stage and effortlessly. With the implemented hydronic scheme, the PVT-collector is also used to regenerate the soil around the ground to increase the temperature level of the heat source resulting in improved performance. However, the efficiency potential of the PV-Cells due to active cooling of the modules is analyzed. The results show an increase of the seasonal performance factor (SPF) of 4.1 % and higher electric energy output of 4.4% due to active cooling of the PV-Cells while energy consumption of the regeneration pump is covered.
      437  914