Research Outputs

2023 2023 2022 2022 2021 2021 2020 2020 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0
Now showing 1 - 2 of 2
  • Publication
    A Case Study of Socially-Accepted Potentials for the Use of End User Flexibility by Home Energy Management Systems
    Due to the increase of volatile renewable energy resources, additional flexibility will be necessary in the electricity system in the future to ensure a technically and economically efficient network operation. Although home energy management systems hold potential for a supply of flexibility to the grid, private end users often neglect or even ignore recommendations regarding beneficial behavior. In this work, the social acceptance and requirements of a participatively developed home energy management system with focus on (i) system support optimization, (ii) self-consumption and self-sufficiency optimization, and (iii) additional comfort functions are determined. Subsequently, the socially-accepted flexibility potential of the home energy management system is estimated. Using methods of online household survey, cluster analysis, and energy-economic optimization, the socially-accepted techno-economic potential of households in a three-community cluster sample area is computed. Results show about a third of the participants accept the developed system. This yields a shiftable load of nearly 1.8 MW within the small sample area. Furthermore, the system yields the considerably larger monetary surplus on the supplier-side due to its focus on system support optimization. New electricity market opportunities are necessary to adequately reward a systemically useful load behavior of households.
      175  1Scopus© Citations 7
  • Publication
    Optimization-Based Operation of District Heating Networks: A Case Study for Two Real Sites
    To achieve the ambitious targets of net-zero greenhouse gas emissions by 2050, there is a need for change in all parts of society, industry, and mobility, as well as in all energy sectors. For this purpose, sector coupling plays a crucial role, e.g., in the form of coupling the electricity with the heat sector using power-to-heat systems. In this article, the effects of the integration of intermittent wind energy via a direct cable, as well as the integration of a boiler into district heating systems powered by a biomass plant and/or a gas boiler, are investigated. Sector coupling in the district heating networks is achieved via the integration of a boiler connected to a local grid station and the use of two air-to-water and two water-to-water heat pumps, which are solely powered by electricity produced by local wind turbines. Furthermore, this work evaluates the economic impacts of the exploding energy prices on the sustainability of district heating systems. Our analysis shows that despite high electricity prices, a reduction in fossil-fuel-based energy generators in the winter season can be determined, and thus a sustainable heat supply can be ensured.
      7  1Scopus© Citations 2