Research Outputs

2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0
Now showing 1 - 3 of 3
  • Publication
    Towards a Security Baseline for IaaS-Cloud Back-Ends in Industry 4.0
    The popularity of cloud based Infrastructure-as-a- Service (IaaS) solutions is becoming increasingly popular. However, since IaaS providers and customers interact in a flexible and scalable environment, security remains a serious concern. To handle such security issues, defining a set of security parameters in the service level agreements (SLA) between both, IaaS provider and customer, is of utmost importance. In this paper, the European Network and Information Security Agency (ENISA) guidelines are evaluated to extract a set of security parameters for IaaS. Furthermore, the level of applicability and implementation of this set is used to assess popular industrial and open-source IaaS cloud platforms, respectively VMware and OpenStack. Both platforms provide private clouds, used as backend infrastructures in Industry 4.0 application scenarios. The results serve as initial work to identify a security baseline and research needs for creating secure cloud environments for Industry 4.0.
      171Scopus© Citations 5
  • Publication
    Automated and Secure Onboarding for System of Systems
    (IEEE, 2021-08-03) ; ; ; ;
    Péceli, Bálint 
    ;
    Singler, Gábor 
    ;
    Kovács, Kristóf 
    ;
    ;
    Delsing, Jerker 
    The Internet of Things (IoT) is rapidly changing the number of connected devices and the way they interact with each other. This increases the need for an automated and secure onboarding procedure for IoT devices, systems and services. Device manufacturers are entering the market with internet connected devices, ranging from small sensors to production devices, which are subject of security threats specific to IoT. The onboarding procedure is required to introduce a new device in a System of Systems (SoS) without compromising the already onboarded devices and the underlying infrastructure. Onboarding is the process of providing access to the network and registering the components for the first time in an IoT/SoS framework, thus creating a chain of trust from the hardware device to its hosted software systems and their provided services. The large number and diversity of device hardware, software systems and running services raises the challenge to establish a generic onboarding procedure. In this paper, we present an automated and secure onboarding procedure for SoS. We have implemented the onboarding procedure in the Eclipse Arrowhead framework. However, it can be easily adapted for other IoT/SoS frameworks that are based on Service-oriented Architecture (SoA) principles. The automated onboarding procedure ensures a secure and trusted communication between the new IoT devices and the Eclipse Arrowhead framework. We show its application in a smart charging use case and perform a security assessment.
      154  1Scopus© Citations 7
  • Publication
    On the Cost of Security Compliance in Information Systems
    (International Institute of Informatics and Systemics, 2019) ; ; ;
    Aldrian, Andreas 
    ;
    The onward development of information and communication technology has led to a new industrial revolution called Industry 4.0. This revolution involves Cyber-Physical Production Systems (CPPS), which consist of intelligent Cyber-Physical Systems that may be able to adapt themselves autonomously in a production environment. At the moment, machines in industrial environments are often not connected to the internet, which thus needs a point-to-point connection to access the device if necessary. Through Industry 4.0, these devices should enable remote access for smart maintenance through a connection to the outside world. However, this connection opens the gate for possible cyber-attacks and thus raises the question about providing security for these environments. Therefore, this paper used an adapted approach based on SixSigma to solve this security problem by investigating security standards. Security requirements were gathered and mapped to controls from well known security standards, formed into a catalog. This catalog includes assessment information to check how secure a solution for a use case is and also includes a link to an estimation method for implementation cost. Thus this paper’s outcome shows how to make Industry 4.0 use cases secure by fulfilling security standard controls and how to estimate the resulting implementation costs.
      571  2927