Research Outputs

2022 2022 2021 2021 2020 2020 2019 2019 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8 2.0 2.0
Now showing 1 - 5 of 5
  • Publication
    Untersuchung eines Elektroabscheiderkonzepts zur Reduktion von Staubemissionen
    (Leykam, 2020-11-26) ; ;
    Pöttler, Martin 
    Particulate emissions are formed during the combustion of biogenic fuels depending on the type of furnace, the operating conditions in terms of the combustion quality and the different fuel properties. The release of especially small particles often leads to health problems such as the development or worsening of lung diseases. Downstream electrostatic precipitators (ESP) represent a state of the art separation technology in medium and large biomass plants. However, these precipitators are often difficult to implement in smaller furnaces due to economic aspects and space constraints. This study deals with the integration and experimental investigation of an ESP system into the boiler body of a small scaled biomass furnace (< 100 kW). In Addition to the full load behaviour of the firing system, further test arrangements with different part load conditions of the boiler are being considered in order to analyse the particle precipitation under realistic plant operation with regard to flue gas properties and flow conditions. Furthermore, different fuels are considered. Both, discontinuous as well as time-resolved aerosol measuring methods are used to determine particulate matter emissions. The results of the discontinuous dust measurements show that with the integrated ESP, at least 50 % of the particles in the fine dust range are separated, both at full and partial load operation of the boiler, irrespective of the fuel used. Furthermore, it is shown that partial load conditions favour the separation efficiency due to low velocities and low temperatures of the gas flow over the discharge electrode, which is situated in the reversing chamber. Accordingly, the separation efficiency in part load is between 65 and 85 %, depending on fuel used. In order to enable a more precise observation of the separation behaviour with regard to particle size, additional continuous ELPI (electrical low pressure impactor) measurements are carried out for a selected fuel (wood chips). These measurements show that for small particle collectives (dP < 1 μm) separation efficiencies of over 55 % (full load) and over 80 % (part load) are achieved.
      5719  301
  • Publication
    Improved ORC process for power production by using low temperature heat
    (2021-10-13) ;
    Beckmann, Georg 
    Organic Rankine Cycles (ORC) are a modification of the classical water-steam process and are particularly suitable for electricity generation from low and medium temperature heat sources, e.g., industrial waste heat or geothermal energy. In contrast to the water-steam process, the ORC process uses organic fluids as working fluids. When using working fluids of the dry class (e.g. n-pentane), a recuperator is frequently installed in state-of-the-art ORC processes to increase the cycle efficiency. This paper analyses an improved ORC process design: A liquid working fluid stream is mixed with the vapour flow between the high-pressure stage and the medium-pressure stage of the turbine. Furthermore, the recuperator is replaced by a spray condenser. These two improvements were analysed by thermodynamic process simulations. As a use case, electricity production from clinker cooler waste heat at a temperature level of 275°C was simulated. The improved process as described would lead to an increase in the overall net efficiency up to 14%, compared to a state-of-the-art ORC process.
      131  198