Options
Inschlag, Franz
Research Outputs
Measurement dataset from real operation of a hybrid photovoltaic-thermal solar collectors, used for the development of a data-driven model
2023-06-21, Veynandt, Francois, Inschlag, Franz, Seidl, Christian, Heschl, Christian
This dataset contains measurements from real operation of a hybrid photovoltaic-thermal solar collector. The data is from a summer period, when the collector works at its higher temperature limit, with low thermal efficiency. The dataset characterizes the output of the collector: thermal (heat transfer fluid flowrate, inlet and outlet temperatures) and electrical (raw current and voltage, Hampel filtered power). Further information on the collector are the PV cell temperature and the back surface temperature (in three points). Detailed weather information are included: ambient temperature, solar resource (direct normal, global and diffuse horizontal, global tilted in the collector plane), equivalent radiative sky temperature (calculated from a pyrgeometer), wind speed and direction both horizontal and in the tilted collector plane. The calculated sun position with Duffie and Beckmann method is also given (elevation and azimuth) . The dataset covers 58 summer days from 11th July to 6th September, with a 5 second time step. The data is available as .mat file (MATLAB) and .csv file. This dataset is presented in details in a dedicated article [1]. A selection of variables from this dataset has already been used in the development of a data-driven model [2]. References: [1] F. Veynandt, F. Inschlag, C. Seidl, C. Heschl, Measurement data from real operation of a hybrid photovoltaic-thermal solar collectors, used for the development of a data-driven model, Data in Brief. 49 (2023) 109417. https://doi.org/10.1016/j.dib.2023.109417. [2] F. Veynandt, P. Klanatsky, H. Plank, C. Heschl, Hybrid photovoltaic-thermal solar collector modelling with parameter identification using operation data, Energy and Buildings. 295 (2023) 113277. https://doi.org/10.1016/j.enbuild.2023.113277.
Vergleich von hygrothermischen Performance Indikatoren in nicht-europäischen Klimazonen
2015-11-26, Veitsberger, H., Inschlag, Franz, Heschl, Christian
Measurement data from real operation of a hybrid photovoltaic-thermal solar collectors, used for the development of a data-driven model
2023, François Veynandt, Franz Inschlag, Christian Seidl, Christian Heschl
This article presents a measurement dataset from real operation of a hybrid photovoltaic-thermal solar collector. The data is from a summer period, when the collector works at its higher temperature limit, with low thermal efficiency. The dataset characterizes the output of the collector: thermal (heat transfer fluid flowrate, inlet and outlet temperatures) and electrical (raw current and voltage, Hampel filtered power). Further information on the collector are the PV cell temperature and the back surface temperature (in three points). It provides detailed weather information: ambient temperature, solar resource (direct normal, global and diffuse horizontal, global tilted in the collector plane), equivalent radiative sky temperature (calculated from a pyrgeometer), wind speed and direction both horizontal and in the tilted collector plane. The calculated sun position with Duffie and Beckmann method is also given (elevation and azimuth) . The dataset covers 58 summer days from 11th July to 6th September, with a 5 second time step. The data is available as .mat file (MATLAB) and .csv file. A selection of variables from this dataset has already been used in the development of a data-driven model (see related article) [1]. The extended data presented in this article offers mode detailed weather information, opening further investigations opportunities. Further options for data-driven modelling of PVT collectors could be investigated. The correlation of wind related losses to horizontal wind measurements could be compared to a model with wind measurements in the collector plane. The dataset could support the validation of solar models, with direct and diffuse shares on the horizontal or in the tilted plane. [Duck Duck Go](https://duckduckgo.com)
System efficiency of PVT-collector driven heat pumps
2019, Hengel, Franz, Heschl, Christian, Inschlag, Franz, Klanatsky, Peter
Standard heat pump (HP) systems with horizontal ground heat exchangers (HGHE) are commonly designed based on arbitrary knowledge gained over time and the use of the rule of thumb. Where an undersizing of the HGHE occurs, the HP efficiencies are lowered. Undersizing could result as a consequence of underestimating the soils thermal conductivity. Therefore, this paper considers the combined photovoltaic and solar thermal (PVT) collectors as an extension to standard HP heating systems with a HGHE in single-family houses with the possibility of improving the COP of the HP at a later stage and effortlessly. With the implemented hydronic scheme, the PVT-collector is also used to regenerate the soil around the ground to increase the temperature level of the heat source resulting in improved performance. However, the efficiency potential of the PV-Cells due to active cooling of the modules is analyzed. The results show an increase of the seasonal performance factor (SPF) of 4.1 % and higher electric energy output of 4.4% due to active cooling of the PV-Cells while energy consumption of the regeneration pump is covered.