Research Outputs

2022 2022 2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 2016 2016 2015 2015 2014 2014 2013 2013 0.0 0.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0
Now showing 1 - 10 of 20
No Thumbnail Available
Publication

Analysing Design Approaches for the Power Consumption in Cyber-Physical Systems

2021-06-30, Sailer, Patrizia, Ivkić, Igor, Tauber, Markus, Mauthe, Andreas, Gouglidis, Antonios

The importance of Cyber Physical Systems (CPS) and Internet of Things (IoT) applications is constantly increasing, especially in the context of Industry 4.0. Architectural decisions are crucial not just for performance, security and resilience reasons but also regarding costs and resource usage. In this paper we analyse two of the fundamental approaches to design control loops (i.e. time-driven and event-driven), show how they can be realised and evaluate their power requirements. Through this the design criteria can be extended also considering the optimization of energy related aspects.

No Thumbnail Available
Publication

Impact of Critical Infrastructure Requirements on Service Migration Guidelines to the Cloud

2015, Wagner, Christian, Hudic, Aleksandar, Maksuti, Silia, Tauber, Markus, Pallas, Frank

A high level of information security in critical infrastructure IT systems and services has to be preserved when migrating their IT services to the cloud. Often various legislative and security constraints have to be met in line with best practice guidelines and international standards to perform the migration. To support the critical infrastructure providers in migrating their services to the cloud we are developing a process based migration guideline for critical infrastructure providers focusing on information security. First of all we investigate, via questionnaires, how the importance of individual security topics covered in such guidelines differentiates between industry stakeholders and critical infrastructure providers. This supports the selection of relevant security topics and the considered guidelines and standards, which we survey in search for common relevant security topics. Subsequently we present the analysis of the above-mentioned security requirements and how they affect a here developed taxonomy for a process-based security guideline. Furthermore we present potential service migration use cases and how our methodology would affect the migration of secure critical infrastructure services.

Loading...
Thumbnail Image
Publication

Security Threats and Risk Analysis of an IoT Web Service for a Smart Vineyard

2018-04, Borrelli, Massimo, Coric, Vanes, Gnauer, Clemens, Wolfgeher, Jennifer, Tauber, Markus

Loading...
Thumbnail Image
Publication

Enabling Security and Safety Evaluation in Industry 4.0 Use Cases with Digital Twins

2018-10, Tauber, Markus, Schmittner, Christoph

Loading...
Thumbnail Image
Publication

Smart Municipality

2019-10, Wolfgeher, Jennifer, Zsilak, Mario, Tauber, Markus

No Thumbnail Available
Publication

Automated and Secure Onboarding for System of Systems

2021-08-03, Maksuti, Silia, Bicaku, Ani, Zsilak, Mario, Ivkić, Igor, Péceli, Bálint, Singler, Gábor, Kovács, Kristóf, Tauber, Markus, Delsing, Jerker

The Internet of Things (IoT) is rapidly changing the number of connected devices and the way they interact with each other. This increases the need for an automated and secure onboarding procedure for IoT devices, systems and services. Device manufacturers are entering the market with internet connected devices, ranging from small sensors to production devices, which are subject of security threats specific to IoT. The onboarding procedure is required to introduce a new device in a System of Systems (SoS) without compromising the already onboarded devices and the underlying infrastructure. Onboarding is the process of providing access to the network and registering the components for the first time in an IoT/SoS framework, thus creating a chain of trust from the hardware device to its hosted software systems and their provided services. The large number and diversity of device hardware, software systems and running services raises the challenge to establish a generic onboarding procedure. In this paper, we present an automated and secure onboarding procedure for SoS. We have implemented the onboarding procedure in the Eclipse Arrowhead framework. However, it can be easily adapted for other IoT/SoS frameworks that are based on Service-oriented Architecture (SoA) principles. The automated onboarding procedure ensures a secure and trusted communication between the new IoT devices and the Eclipse Arrowhead framework. We show its application in a smart charging use case and perform a security assessment.

Loading...
Thumbnail Image
Publication

Security standard compliance and continuous verification for Industrial Internet of Things

2020, Bicaku, Ani, Tauber, Markus, Delsing, Jerker

Due to globalization and digitalization of industrial systems, standard compliance is gaining more attention. In order to stay competitive and remain in business, different sectors within industry are required to comply with multiple regulations. Compliance aims to fulfill regulations by including all measures imposed by laws and standards. Every device, application, or service implements several technologies at many levels, and standards support interoperability across them. They help to create global markets for industries and enable networked development in order to be successful and sustainable. This work highlights the importance of standard compliance and continuous verification in industrial Internet of Things and implements an automatic monitoring and standard compliance verification framework. In this work, we focus on security, safety, and organizational aspects of industrial Internet of Things. We identify a number of standards and best practice guidelines, which are used to extract security, safety, and organizational measurable indicator points. In addition, a metric model is provided that forms the basis for the necessary information needed for compliance verification, including requirements, standards, and metrics. Also, we present the prototype of the monitoring and standard compliance verification framework used to show the security compliance of an industrial Internet of Things use case.

No Thumbnail Available
Publication

A Framework for Measuring the Costs of Security at Runtime

2019, Ivkić, Igor, Pichler, Harald, Zsilak, Mario, Mauthe, Andreas, Tauber, Markus

In Industry 4.0, Cyber-Physical Systems (CPS) are formed by components, which are interconnected with each other over the Internet of Things (IoT). The resulting capabilities of sensing and affecting the physical world offer a vast range of opportunities, yet, at the same time pose new security challenges. To address these challenges there are various IoT Frameworks, which offer solutions for managing and controlling IoT-components and their interactions. In this regard, providing security for an interaction usually requires performing additional security-related tasks (e.g. authorisation, encryption, etc.) to prevent possible security risks. Research currently focuses more on designing and developing these frameworks and does not satisfactorily provide methodologies for evaluating the resulting costs of providing security. In this paper we propose an initial approach for measuring the resulting costs of providing security for interacting IoT-components by using a Security Cost Modell ing Framework. Furthermore, we describe the necessary building blocks of the framework and provide an experimental design showing how it could be used to measure security costs at runtime.

No Thumbnail Available
Publication

Harmonized Monitoring for High Assurance Clouds

2016-04-18, Bicaku, Ani, Balaban, Silvia, Tauber, Markus, Hudic, Aleksandar, Mauthe, Andreas, Hutchison, David

Due to a lack of transparency in cloud based services well-defined security levels cannot be assured within current cloud infrastructures. Hence sectors with stringent security requirements hesitate to migrate their services to the cloud. This applies especially when considering services where high security requirements are combined with legal constraints. To tackle this challenge this paper presents an extension to our existing work on assurance methodologies in cloud based environments by investigating how current state of the art monitoring solutions can be used to support assurance throughout the entire infrastructure. A case study is used in which monitoring information representing a set of relevant security properties is being collected. As result, we propose that a combination of existing tools should be used to harmonize existing monitoring artifacts. We describe and evaluate an Evidence Gathering Mechanism (EGM) that provides this harmonization and show how this can support assurance. This can also underpin legal proceedings from an evidence law perspective.

No Thumbnail Available
Publication

Function-as-a-Service Benchmarking Framework

2019, Pellegrini, Roland, Ivkić, Igor, Tauber, Markus

Cloud Service Providers deliver their products in form of ”as-a-Service”, which are typically categorized by the level of abstraction. This approach hides the implementation details and shows only functionality to the user. However, the problem is that it is hard to measure the performance of Cloud services, because they behave like black boxes. Especially with Function-as-a-Service it is even more difficult because it completely hides server and infrastructure management from users by design. Cloud Service Prodivers usually restrict the maximum size of code, memory and runtime of Cloud Functions. Nevertheless, users need clarification if more ressources are needed to deliver services in high quality. In this regard, we present the architectural design of a new Function-as-a-Service benchmarking tool, which allows users to evaluate the performance of Cloud Functions. Furthermore, the capabilities of the framework are tested on an isolated platform with a specific workload. The results show that users are able to get insights into Function-as-a-Service environments. This, in turn, allows users to identify factors which may slow down or speed up the performance of Cloud Functions.