Options
Tauber, Markus
Research Outputs
A Lightweight Authentication Mechanism for M2M Communications in Industrial IoT Environment
2019, Esfahani, A., Mantas, G., Matischek, R., Saghezchi, F., Bicaku, Ani, Maksuti, Silia, Tauber, Markus, Schmittner, Ch., Bastos, J.
In the emerging industrial Internet of Things (IIoT) era, machine-to-machine (M2M) communication technology is considered as a key underlying technology for building IIoT environments, where devices (e.g., sensors, actuators, and gateways) are enabled to exchange information with each other in an autonomous way without human intervention. However, most of the existing M2M protocols that can be also used in the IIoT domain provide security mechanisms based on asymmetric cryptography resulting in high computational cost. As a consequence, the resource-constrained IoT devices are not able to support them appropriately and thus, many security issues arise for the IIoT environment. Therefore, lightweight security mechanisms are required for M2M communications in IIoT in order to reach its full potential. As a step toward this direction, in this paper, we propose a lightweight authentication mechanism, based only on hash and XOR operations, for M2M communications in IIoT environment. The proposed mechanism is characterized by low computational cost, communication, and storage overhead, while achieving mutual authentication, session key agreement, device's identity confidentiality, and resistance against the following attacks: replay attack, man-in-the-middle attack, impersonation attack, and modification attack.
Operations security evaluation of IaaS-cloud backend for industry 4.0
2018-03, Schluga, Oliver, Bauer, Elisabeth, Bicaku, Ani, Maksuti, Silia, Tauber, Markus, Wöhler, Alexander
The fast growing number of cloud based Infrastructure-as-a-Service instances raises the question, how the operations security depending on the underlying cloud computing infrastructure can be sustained and guaranteed. Security standards provide guidelines for information security controls applicable to the provision and use of the cloud services. The objectives of operations security are to support planning and sustaining of day-to-day processes that are critical with respect to security of information environments. In this work we provide a detailed analysis of ISO 27017 standard regarding security controls and investigate how well popular cloud platforms can cater for them. The resulting gap of support for individual security controls is furthermore compared with outcomes of recent cloud security research projects. Hence the contribution is twofold, first we identify a set of topics that still require research and development and secondly, as a practical output, we provide a comparison of popular industrial and open-source platforms focusing on private cloud environments, which are important for Industry 4.0 use cases.
Towards a Security Baseline for IaaS-Cloud Back-Ends in Industry 4.0
2017-12, Bauer, Elisabeth, Schluga, Oliver, Maksuti, Silia, Bicaku, Ani, Hofbauer, David, Ivkić, Igor, Wöhrer, Alexander, Tauber, Markus
The popularity of cloud based Infrastructure-as-a- Service (IaaS) solutions is becoming increasingly popular. However, since IaaS providers and customers interact in a flexible and scalable environment, security remains a serious concern. To handle such security issues, defining a set of security parameters in the service level agreements (SLA) between both, IaaS provider and customer, is of utmost importance. In this paper, the European Network and Information Security Agency (ENISA) guidelines are evaluated to extract a set of security parameters for IaaS. Furthermore, the level of applicability and implementation of this set is used to assess popular industrial and open-source IaaS cloud platforms, respectively VMware and OpenStack. Both platforms provide private clouds, used as backend infrastructures in Industry 4.0 application scenarios. The results serve as initial work to identify a security baseline and research needs for creating secure cloud environments for Industry 4.0.
Towards flexible and secure end-to-end communication in industry 4.0
2017, Maksuti, Silia, Bicaku, Ani, Tauber, Markus, Palkovits-Rauter, Silke, Haas, Sarah, Delsing, Jerker
The digital transformation of industrial production is driven by the advance of cyber-physical production systems (CPPS) within which raw materials, machines and operations are interconnected to form a sophisticated network. Making such systems self-adaptable is a priority concern for the future implementation of Industry 4.0 application scenarios. In this position paper, we design a meta-model and use it as a tool to describe an end-to-end communication use case from an ongoing research project. Based on this use case we develop a business process performance and security trade-off model, which shows that maximazing both parameters at the same time is not possible, thus an efficient balance between them has to be achieved. Motivated by the result, we propose self adaptation as a solution towards a flexible and secure end-to-end communication in Industry 4.0. To identify and document the self-adaptation points in a structured methodological and lightweight way we use the bespoken meta-model.
Towards trustworthy end-to-end communication in industry 4.0
2017, Bicaku, Ani, Maksuti, Silia, Palkovits-Rauter, Silke, Tauber, Markus, Matischek, Rainer, Schmittner, Christoph, Mantas, Georgios, Thron, Mario, Delsing, Jerker
Industry 4.0 considers integration of IT and control systems with physical objects, software, sensors and connectivity in order to optimize manufacturing processes. It provides advanced functionalities in control and communication for an infrastructure that handles multiple tasks in various locations automatically. Automatic actions require information from trustworthy sources. Thus, this work is focused on how to ensure trustworthy communication from the edge devices to the backend infrastructure. We derive a meta-model based on RAMI 4.0, which is used to describe an end-to-end communication use case for an Industry 4.0 application scenario and to identify dependabilities in case of security challenges. Furthermore, we evaluate secure messaging protocols and the integration of Trusted Platform Module (TPM) as a root of trust for dataexchange. We define a set of representative measurable indicator points based on existing standards and use them for automated dependability detection within the whole system.