Options
Tauber, Markus
Loading...
Official Name
Tauber, Markus
Akademische Titel
Ehemaliger FH Mitarbeiter
Scopus Author ID
37058207900
Status
exstaff
Research Outputs
Now showing 1 - 3 of 3
- PublicationGeneric Autonomic Management as a Service in a SOA-based Framework for Industry 4.0Cyber-physical production systems are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. In order to make these systems interoperable with each other for addressing Industry 4.0 applications a number of service-oriented architecture frameworks are developed. Such frameworks are composed by a number of services, which are inherently dynamic by nature and thus imply the need for self-adaptation. In this paper we propose generic autonomic management as a service and show how it can be integrated in the Arrowhead framework. We propose generic and reusable interfaces for each phase of the autonomic control loop in order to increase the usability of the service for other frameworks and application systems, while reducing the software engineering effort. To show the utility of our approach in the Arrowhead framework we use a climate control application as a representative example.
424 1Scopus© Citations 10 - PublicationTowards a secure and self-adapting smart indoor farming framework(Springer, 2019-10-21)
; ; ; ;Schmittner, Christoph ;Christl, Korbinian ;Knapitsch, JohannesParapatits, MartinFacing the increase in world population and the stagnation in available arable land there is a high demand for optimizing the food production. Considering the world-wide and ongoing reduction of the agricultural labor force novel approaches for food production are required. Vertical farming may be such a solution where plants are being produced indoors in racks, cared by robotic appliances which will be operated by specialized software. Given the multitude of parameters which determine the ideal condition, a lot of data needs to be acquired. As this data is used to adapt the entire Cyber-Physical System to a changing environment the data has to be secure and adaptations have to consider safety aspects as well. Such systems must hence be secure, safe, scalable and self-adaptable to a high degree. We present an important element for such solutions, a cloud, IoT and robotic based smart farming framework.611 40215Scopus© Citations 16 - PublicationA recommendation for suitable technologies for an indoor farming framework(Springer, 2020)
; ; ;Schmittner, Christoph; ;Christl, Korbinian ;Knapitsch, JohannesParapatits, MartinFacing food insecurity and overuse of resources due to effects of climate change, humanity needs to find new ways to secure food production and produce close to consumers. Vertical farming, where plants are grown in vertical arrays inside buildings with help of Information and Communication Technology (ICT) components, could contribute to solving this issue. Such systems integrate heterogeneous devices on different computing layers and acquire a lot of data to monitor and optimize the production process. We created an indoor testing unit in which growing conditions can be monitored and controlled to optimize growth of microgreens. This setup includes an Indoor Farming Support as a Service (IFSaaS) prototype that provides safe and secure monitoring and controlling, as well as self-adaption of an indoor farming system. In this article we provide information about the combination of most suitable technologies.602 42226Scopus© Citations 8