Research Outputs

2022 2022 2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 2016 2016 2015 2015 2014 2014 2013 2013 0.0 0.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0
Now showing 1 - 10 of 20
  • Publication
      271  621
  • Publication
    Towards a secure and self-adapting smart indoor farming framework
    (Springer, 2019-10-21) ; ; ;
    Schmittner, Christoph 
    ;
    Christl, Korbinian 
    ;
    Knapitsch, Johannes 
    ;
    Parapatits, Martin 
    Facing the increase in world population and the stagnation in available arable land there is a high demand for optimizing the food production. Considering the world-wide and ongoing reduction of the agricultural labor force novel approaches for food production are required. Vertical farming may be such a solution where plants are being produced indoors in racks, cared by robotic appliances which will be operated by specialized software. Given the multitude of parameters which determine the ideal condition, a lot of data needs to be acquired. As this data is used to adapt the entire Cyber-Physical System to a changing environment the data has to be secure and adaptations have to consider safety aspects as well. Such systems must hence be secure, safe, scalable and self-adaptable to a high degree. We present an important element for such solutions, a cloud, IoT and robotic based smart farming framework.
      611  35488Scopus© Citations 16
  • Publication
    Automated and Secure Onboarding for System of Systems
    (IEEE, 2021-08-03) ; ; ; ;
    Péceli, Bálint 
    ;
    Singler, Gábor 
    ;
    Kovács, Kristóf 
    ;
    ;
    Delsing, Jerker 
    The Internet of Things (IoT) is rapidly changing the number of connected devices and the way they interact with each other. This increases the need for an automated and secure onboarding procedure for IoT devices, systems and services. Device manufacturers are entering the market with internet connected devices, ranging from small sensors to production devices, which are subject of security threats specific to IoT. The onboarding procedure is required to introduce a new device in a System of Systems (SoS) without compromising the already onboarded devices and the underlying infrastructure. Onboarding is the process of providing access to the network and registering the components for the first time in an IoT/SoS framework, thus creating a chain of trust from the hardware device to its hosted software systems and their provided services. The large number and diversity of device hardware, software systems and running services raises the challenge to establish a generic onboarding procedure. In this paper, we present an automated and secure onboarding procedure for SoS. We have implemented the onboarding procedure in the Eclipse Arrowhead framework. However, it can be easily adapted for other IoT/SoS frameworks that are based on Service-oriented Architecture (SoA) principles. The automated onboarding procedure ensures a secure and trusted communication between the new IoT devices and the Eclipse Arrowhead framework. We show its application in a smart charging use case and perform a security assessment.
      154  1Scopus© Citations 7
  • Publication
    Function-as-a-Service Benchmarking Framework
    Cloud Service Providers deliver their products in form of ”as-a-Service”, which are typically categorized by the level of abstraction. This approach hides the implementation details and shows only functionality to the user. However, the problem is that it is hard to measure the performance of Cloud services, because they behave like black boxes. Especially with Function-as-a-Service it is even more difficult because it completely hides server and infrastructure management from users by design. Cloud Service Prodivers usually restrict the maximum size of code, memory and runtime of Cloud Functions. Nevertheless, users need clarification if more ressources are needed to deliver services in high quality. In this regard, we present the architectural design of a new Function-as-a-Service benchmarking tool, which allows users to evaluate the performance of Cloud Functions. Furthermore, the capabilities of the framework are tested on an isolated platform with a specific workload. The results show that users are able to get insights into Function-as-a-Service environments. This, in turn, allows users to identify factors which may slow down or speed up the performance of Cloud Functions.
      509  1Scopus© Citations 1
  • Publication
    A recommendation for suitable technologies for an indoor farming framework
    (Springer, 2020) ; ;
    Schmittner, Christoph 
    ;
    ;
    Christl, Korbinian 
    ;
    Knapitsch, Johannes 
    ;
    Parapatits, Martin 
    Facing food insecurity and overuse of resources due to effects of climate change, humanity needs to find new ways to secure food production and produce close to consumers. Vertical farming, where plants are grown in vertical arrays inside buildings with help of Information and Communication Technology (ICT) components, could contribute to solving this issue. Such systems integrate heterogeneous devices on different computing layers and acquire a lot of data to monitor and optimize the production process. We created an indoor testing unit in which growing conditions can be monitored and controlled to optimize growth of microgreens. This setup includes an Indoor Farming Support as a Service (IFSaaS) prototype that provides safe and secure monitoring and controlling, as well as self-adaption of an indoor farming system. In this article we provide information about the combination of most suitable technologies.
    Scopus© Citations 6  600  37711
  • Publication
    Harmonized Monitoring for High Assurance Clouds
    (IEEE, 2016-04-18) ;
    Balaban, Silvia 
    ;
    ;
    Hudic, Aleksandar 
    ;
    Mauthe, Andreas 
    ;
    Hutchison, David 
    Due to a lack of transparency in cloud based services well-defined security levels cannot be assured within current cloud infrastructures. Hence sectors with stringent security requirements hesitate to migrate their services to the cloud. This applies especially when considering services where high security requirements are combined with legal constraints. To tackle this challenge this paper presents an extension to our existing work on assurance methodologies in cloud based environments by investigating how current state of the art monitoring solutions can be used to support assurance throughout the entire infrastructure. A case study is used in which monitoring information representing a set of relevant security properties is being collected. As result, we propose that a combination of existing tools should be used to harmonize existing monitoring artifacts. We describe and evaluate an Evidence Gathering Mechanism (EGM) that provides this harmonization and show how this can support assurance. This can also underpin legal proceedings from an evidence law perspective.
      165  1Scopus© Citations 8
  • Publication
    A Framework for Measuring the Costs of Security at Runtime
    (SCITEPRESS, 2019) ; ; ;
    Mauthe, Andreas 
    ;
    In Industry 4.0, Cyber-Physical Systems (CPS) are formed by components, which are interconnected with each other over the Internet of Things (IoT). The resulting capabilities of sensing and affecting the physical world offer a vast range of opportunities, yet, at the same time pose new security challenges. To address these challenges there are various IoT Frameworks, which offer solutions for managing and controlling IoT-components and their interactions. In this regard, providing security for an interaction usually requires performing additional security-related tasks (e.g. authorisation, encryption, etc.) to prevent possible security risks. Research currently focuses more on designing and developing these frameworks and does not satisfactorily provide methodologies for evaluating the resulting costs of providing security. In this paper we propose an initial approach for measuring the resulting costs of providing security for interacting IoT-components by using a Security Cost Modell ing Framework. Furthermore, we describe the necessary building blocks of the framework and provide an experimental design showing how it could be used to measure security costs at runtime.
      537  1Scopus© Citations 2
  • Publication
      531  592
  • Publication
    A Security Cost Modelling Framework for Cyber-Physical Systems
    (ACM, 2022-05) ; ;
    Gouglidis, Antonios 
    ;
    Mauthe, Andreas 
    ;
    Cyber-Physical Systems (CPS) are formed through interconnected components capable of computation, communication, sensing and changing the physical world. The development of these systems poses a significant challenge since they have to be designed in a way to ensure cyber-security without impacting their performance. This article presents the Security Cost Modelling Framework (SCMF) and shows supported by an experimental study how it can be used to measure, normalise and aggregate the overall performance of a CPS. Unlike previous studies, our approach uses different metrics to measure the overall performance of a CPS and provides a methodology for normalising the measurement results of different units to a common Cost Unit. Moreover, we show how the Security Costs can be extracted from the overall performance measurements which allows to quantify the overhead imposed by performing security-related tasks. Furthermore, we describe the architecture of our experimental testbed and demonstrate the applicability of SCMF in an experimental study. Our results show that measuring the overall performance and extracting the security costs using SCMF can serve as basis to redesign interactions to achieve the same overall goal at less costs.
      167  2Scopus© Citations 2