Research Outputs

2013 2013 2012 2012 2011 2011 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8 2.0 2.0
Now showing 1 - 5 of 5
  • Publication
    The Case for Heterogeneous WLAN Environments for Converged Networks
    (2013) ;
    Bhatti, S. N. 
    ;
    Melnikov, N. 
    ;
    Schoenwaelder, J. 
      105  1
  • Publication
    The Effect of the 802.11 Power Save Mechanism (PSM) on Energy Efficiency and Performance During System Activity
    (2012) ;
    Bhatti, S. N. 
    802.11 WLAN is a popular choice for wireless access on a range of ICT devices. A growing concern is the increased energy usage of ICT, for reasons of cost and environmental protection. The Power Save Mode (PSM) in 802.11 deactivates the wireless network interface during periods of inactivity. However, applications increasingly use push models, and so devices may be active much of the time. We have investigated the effectiveness of PSM, and considered its impact on performance when a device is active. Rather than concentrate on the NIC, we have taken a system-wide approach, to gauge the impact of the PSM from an application perspective. We experimentally evaluated performance at the packet level and system-wide power usage under various offered loads, controlled by packet size and data rate, on our 802.11n test bed. We have measured the system-wide power consumption corresponding to the individual traffic profiles and have derived application-specific effective energy-usage. We have found that in our scenarios, no significant benefit can be gained from using PSM.
      105  1Scopus© Citations 34
  • Publication
    Application Level Energy and Performance Measurements in a Wireless LAN
    (2011) ;
    Bhatti, S. N. 
    ;
    Yu, Y. 
    We present an experimental evaluation of energy usage and performance in a wireless LAN cell based on a test bed using the 5 GHz ISM band for 802.11a and 802.11n. We have taken an application-level approach, by varying the packet size and transmission rate at the protocol level and evaluating energy usage across a range of application transmission rates using both large and small packet sizes. We have observed that both the application's transmission rate and the packet size have an impact on energy efficiency for transmission in our test bed. We also included in our experiments evaluation of the energy efficiency of emulations of YouTube and Skype flows, and a comparison with Ethernet transmissions.
      141  1Scopus© Citations 24
  • Publication
      108  1Scopus© Citations 12
  • Publication
    Towards Energy-Awareness in Managing Wireless LAN Applications
    (2012) ;
    Bhatti, S. N. 
    ;
    Yu, Y. 
    We have investigated the scope for enabling WLAN applications to manage the trade-off between performance and energy usage. We have conducted measurements of energy usage and performance in our 802.11n WLAN testbed, which operates in the 5 GHz ISM band. We have defined an effective energy usage envelope with respect to application-level packet transmission, and we demonstrate how performance as well as the effective energy usage envelope is effected by various configurations of IEEE 802.11n, including transmission power levels and channel width. Our findings show that the packet size and packet rate of the application flow have the greatest impact on application-level energy usage, compared to transmission power and channel width. As well as testing across a range of packet sizes and packet rates, we emulate a Skype flow, a YouTube flow and file transfers (HTTP over Internet and local server) to place our results in context. Based on our measurements we discuss approaches and potential improvements of management in effective energy usage for the tested applications.
      113  1Scopus© Citations 14