Research Outputs

2019 2019 2018 2018 2017 2017 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0
Now showing 1 - 2 of 2
  • Publication
    Towards flexible and secure end-to-end communication in industry 4.0
    (IEEE, 2017) ; ; ; ;
    Haas, Sarah 
    ;
    Delsing, Jerker 
    The digital transformation of industrial production is driven by the advance of cyber-physical production systems (CPPS) within which raw materials, machines and operations are interconnected to form a sophisticated network. Making such systems self-adaptable is a priority concern for the future implementation of Industry 4.0 application scenarios. In this position paper, we design a meta-model and use it as a tool to describe an end-to-end communication use case from an ongoing research project. Based on this use case we develop a business process performance and security trade-off model, which shows that maximazing both parameters at the same time is not possible, thus an efficient balance between them has to be achieved. Motivated by the result, we propose self adaptation as a solution towards a flexible and secure end-to-end communication in Industry 4.0. To identify and document the self-adaptation points in a structured methodological and lightweight way we use the bespoken meta-model.
      118  131Scopus© Citations 15
  • Publication
    A Lightweight Authentication Mechanism for M2M Communications in Industrial IoT Environment
    (2019)
    Esfahani, A. 
    ;
    Mantas, G. 
    ;
    Matischek, R. 
    ;
    Saghezchi, F. 
    ;
    ; ; ;
    Schmittner, Ch. 
    ;
    Bastos, J. 
    In the emerging industrial Internet of Things (IIoT) era, machine-to-machine (M2M) communication technology is considered as a key underlying technology for building IIoT environments, where devices (e.g., sensors, actuators, and gateways) are enabled to exchange information with each other in an autonomous way without human intervention. However, most of the existing M2M protocols that can be also used in the IIoT domain provide security mechanisms based on asymmetric cryptography resulting in high computational cost. As a consequence, the resource-constrained IoT devices are not able to support them appropriately and thus, many security issues arise for the IIoT environment. Therefore, lightweight security mechanisms are required for M2M communications in IIoT in order to reach its full potential. As a step toward this direction, in this paper, we propose a lightweight authentication mechanism, based only on hash and XOR operations, for M2M communications in IIoT environment. The proposed mechanism is characterized by low computational cost, communication, and storage overhead, while achieving mutual authentication, session key agreement, device's identity confidentiality, and resistance against the following attacks: replay attack, man-in-the-middle attack, impersonation attack, and modification attack.
      562  958Scopus© Citations 213