Research Outputs

2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8 2.0 2.0
Now showing 1 - 5 of 5
No Thumbnail Available
Publication

Smart industrial indoor farming - Technical and societal challenges

2019, Schmittner, Christoph, Christl, Korbinian, Macher, Georg, Knapitsch, Johannes, Parapatits, Martin, Tauber, Markus, Pichler, Harald, Gnauer, Clemens

Population growth and food development are two of the major challenges for society. While smart farming can help, available arable land is restricted. Smart industrial indoor farming has the potential to increase agricultural production while also reducing resources usage. To guarantee a reliable food supply, we need to ensure a dependable system, which protects not only the plants, but also the Intellectual property (IP). We give an overview about the challenges on agriculture, available indoor farming systems and standards for smart farming. We evaluate the standards for applicability towards indoor farming and present a use case for a smart industrial indoor farming system. To assure a dependable system, we present a methodology to analyze the system and achieve a trade-off between different dependability attributes.

No Thumbnail Available
Publication

Towards trustworthy end-to-end communication in industry 4.0

2017, Bicaku, Ani, Maksuti, Silia, Palkovits-Rauter, Silke, Tauber, Markus, Matischek, Rainer, Schmittner, Christoph, Mantas, Georgios, Thron, Mario, Delsing, Jerker

Industry 4.0 considers integration of IT and control systems with physical objects, software, sensors and connectivity in order to optimize manufacturing processes. It provides advanced functionalities in control and communication for an infrastructure that handles multiple tasks in various locations automatically. Automatic actions require information from trustworthy sources. Thus, this work is focused on how to ensure trustworthy communication from the edge devices to the backend infrastructure. We derive a meta-model based on RAMI 4.0, which is used to describe an end-to-end communication use case for an Industry 4.0 application scenario and to identify dependabilities in case of security challenges. Furthermore, we evaluate secure messaging protocols and the integration of Trusted Platform Module (TPM) as a root of trust for dataexchange. We define a set of representative measurable indicator points based on existing standards and use them for automated dependability detection within the whole system.

No Thumbnail Available
Publication

Establishing a Chain of Trust in a Sporadically Connected Cyber-Physical System

2021-05, Maksuti, Silia, Pickem, Michael, Zsilak, Mario, Stummer, Anna, Tauber, Markus, Wieschhoff, Marcus, Pirker, Dominic, Schmittner, Christoph, Delsing, Jerker

Drone based applications have progressed significantly in recent years across many industries, including agriculture. This paper proposes a sporadically connected cyber-physical system for assisting winemakers and minimizing the travel time to remote and poorly connected infrastructures. A set of representative diseases and conditions, which will be monitored by land-bound sensors in combination with multispectral images, is identified. To collect accurate data, a trustworthy and secured communication of the drone with the sensors and the base station should be established. We propose to use an Internet of Things framework for establishing a chain of trust by securely onboarding drones, sensors and base station, and providing self-adaptation support for the use case. Furthermore, we perform a security analysis of the use case for identifying potential threats and security controls that should be in place for mitigating them.

No Thumbnail Available
Publication

Connected cars — Threats, vulnerabilities and their impact

2018-05, Strobl, Stefanie, Hofbauer, David, Schmittner, Christoph, Maksuti, Silia, Tauber, Markus, Delsing, Jerker

The growing demand for interoperability between system components within a connected car has led to new security challenges in automotive development. The existing components, based on established technology, are often being combined to form such a connected car. For such established technologies, individual, often sector specific threat and vulnerability catalogs exist. The aim of this paper is to identify blocks of established technologies in a connected car and to consolidate the corresponding threat and vulnerability catalogs relevant for the individual constituent components. These findings are used to estimate the impact on specific system components and subsystems to identify the most crucial components and threats.

No Thumbnail Available
Publication

Autonomous CPS Mobility Securely Designed

2019-06, Hofbauer, David, Schmittner, Christoph, Brandstetter, Manuela, Tauber, Markus