Research Outputs

2024 2024 2023 2023 2022 2022 2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 2016 2016 2015 2015 0.0 0.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0
Now showing 1 - 10 of 39
No Thumbnail Available
Publication

Fatigue behavior of Au, Cu and PCC fine wire bond connections for power LED applications

2023, Czerny, Bernhard, Schuh, Sebastian

No Thumbnail Available
Publication

Application of in-situ non-invasive failure detection methods for wire bonds

2020-09-15, Czerny, Bernhard, Chavan, Vinayak, Gasser, Christoph, Rosc, Jördis, Khatibi, Golta

Two in-situ failure detection methods by measuring acoustic emissions and transducer responses are presented to investigate the wire bond degradation failure during a highly accelerated mechanical fatigue test. This BAMFIT fatigue test is used to induce cyclic shear stresses in the bond interface until wire bond lift-off, operating at 60 kHz. The task was to incorporate non-invasive failure detection to identify the degree of degradation prior to end of life as an extension to the BAMFIT method and a possible quality control method. The acoustic emission investigations uses a Fabry Perot interferometer to detect high frequency emissions in the vicinity of the wire bond and detecting changes in the first three harmonics to identify a bond degradation. The transducer response approach observes systematic changes in the vibration and the damping behavior of the coupled resonance system by using the transducer as a piezo sensor. The results have shown that defective bond interconnect can be identified as early as ~50% of end of life, using high power but very short vibration pulses, and at ~80% for low power and completely non-invasive pulses. The obtained responses from the presented methods were correlated to the degree of degradation of the bond wire interface, by completing BAMFIT tests until end of life, cross section analysis as well as non-destructive X-ray computer tomography.

No Thumbnail Available
Publication

Interface characterization of Cu-Cu ball bonds by a fast shear fatigue method

2020-11, Czerny, Bernhard, Khatibi, Golta

A highly accelerated shear fatigue testing method is presented to test the long-term reliability and reveal the bonded interface of thermosonic Cusingle bondCu ball bonds. The method is an adaptation to a new industrial fatigue tester (BAMFIT) and can be conducted without an intricate specimen preparation. This method induces mechanical cyclic shear stresses to the Cu nailhead in order to initiate fatigue fracture until lift-off, revealing the actual bonded interface. This study compares the fatigue resistance of Cu wire bonded to coarse and fine grained Cu and Al metallization. The fatigue experiments are accompanied by nano indentation tests, shear tests and finite element analysis. The fatigue results showed the best performance for Cu bonds on coarse grained Cu pads (metallization), followed by those bonded on fine grained Cu while the Cusingle bondAl nailheads failed at least a decade earlier than Cusingle bondCu bonds. Annealing the specimens prior to testing resulted in slight increases in the number of loading cycles to failure (Nf) for Cu bonds as well as for Cusingle bondAl bonds, while the scattering in Nf for Cu bonds increased. Nevertheless the calculated endurance limit of the fatigue data decreases with increasing annealing stages, due to a change in the fracture probability curve. With the ability to compare the fatigue behaviour of the bonded interface within minutes, this method is most suitable for rapid qualification at an early stage of development.

No Thumbnail Available
Publication

Simulation of stress concentrations in wire-bonds using a novel strain gradient theory

2013-04-14, Czerny, Bernhard, Lederer, Martin, Nagl, Bernhard, Trnka, A., Khatibi, Golta, Thoben, Markus

Fatigue failure of wire-bonds is one of the key factors limiting the lifetime of power electronic devices. In IGBT (insulated gate bipolar transistor) modules, wire-bonds are exposed to repeated temperature changes leading to thermo-mechanical stresses in the constituent materials. Due to the geometry, stress concentrations arise at the interfaces of aluminum wires and silicon chips. In the framework of classical continuum mechanics, these stress concentrations show the characteristics of stress singularities. Nevertheless, IGBT modules reach lifetimes of about 30 years under service conditions. Therefore, it seems that classical continuum mechanics exaggerates the stress concentrations occurring at the material transitions. Hence, it is the subject of the present investigation to calculate more realistic stress distributions using a novel strain gradient theory.

No Thumbnail Available
Publication

Cyclic robustness of heavy wire bonds: Al, AlMg, Cu and CucorAl

2018-09, Czerny, Bernhard, Khatibi, Golta

Development of advanced electronic packages can be drastically affected by implementation of new materials. The ever increasing demands for high performance and reliable power electronics, raise the need for rapid robustness evaluation of interconnects. In this study the lifetime of heavy wire bonded interconnects, fabricated with different wire material types Al, AlMg, Cu and Al coated Cu (CucorAl) bonded onto direct copper bonded ceramic substrates was investigated. The tests were performed using an accelerated mechanical fatigue testing system, which allows to determine the lifetime of the interconnects with regard to wire bond lift-off failure in a short period of time. Thus, the influence of ultrasonic power variation and the impact of aging on the performance of wire bonds with different material combinations was studied. Cu wire bonds showed clearly the best fatigue performance as well as static shear strength followed by AlMg and Al bonds. Increasing the ultrasonic power results in a higher fatigue resistance of CucorAl in comparison to pure Al wires. In certain cases, the results of the fatigue experiments and static shear tests were found to be contradictory. The presented results suggest that accelerated mechanical fatigue testing can be used as an additional fast method for qualification of interconnects and assessment of the influence of wire material, bond parameter and aging.

No Thumbnail Available
Publication

Fatigue life time modelling of Cu and Au fine wires

2018-05-25, Czerny, Bernhard, Khatibi, Golta, Mazloum-Nejadari, Ali, Delshadmanesh, Mitra, Lederer, Martin

In this study, the influence of microstructure on the cyclic behaviour and lifetime of Cu and Au wires with diameters of 25μm in the low and high cycle fatigue regimes was investigated. Low cycle fatigue (LCF) tests were conducted with a load ratio of 0.1 and a strain rate of ~2e-4. An ultrasonic resonance fatigue testing system working at 20 kHz was used to obtain lifetime curves under symmetrical loading conditions up to very high cycle regime (VHCF). In order to obtain a total fatigue life model covering the low to high cycle regime of the thin wires by considering the effects of mean stress, a four parameter lifetime model is proposed. The effect of testing frequency on high cycle fatigue data of Cu is discussed based on analysis of strain rate dependency of the tensile properties with the help of the material model proposed by Johnson and Cook.

No Thumbnail Available
Publication

Loop formation effects on the lifetime of wire bonds for power electronics

2020-03-24, Czerny, Bernhard, Ribbeck, Hans-Georg von, Doehler, Torsten, Khatibi, Golta, Geissler, Ute

In the present work, the influence of loop forming aspects on the reliability of US-bonded aluminium heavy wires was studied, combining three measurement techniques, for the first time: Laser confocal microscopy based wrinkling characterization, accelerated lifetime measurements BAMFIT and destructive pull tests. The focus of this study was the systematic investigation of the heel region of the wire bond depending on process parameters and especially on the loop geometry regarding durability and lifetime. As first results, effects reducing durability were identified which are not apparent in normal testing and a recommendation for the use of reverse movements can be given.

No Thumbnail Available
Publication

Accelerated mechanical fatigue interconnect testing method for heavy wire bonds in power modules

2017-05-11, Czerny, Bernhard

Every new development in device performance and packaging design, due to new materials and design changes can influence the device reliability drastically. High performance and high reliability demands in power electronics over several decades and a short time to market development, raise the need for very fast reliability testing methods. In this study a mechanical fatigue testing method is presented for evaluating the interfacial fatigue resistance of heavy Al wire bonded interconnects in high power modules. By separating the concurrent thermal, mechanical and environmental failure mechanisms a selective investigation of the desired failure mode is possible. The setup is designed to reproduce the thermo-mechanical shear stresses by mechanical means, while provoking the same lift-off failure mode as in power cycling tests. With a frequency variable test setup of a few Hz up to several kHz, measurements from 1E3 up to 1E8 and determining the influence of the testing frequency on the fatigue life were possible.

No Thumbnail Available
Publication

Comparative study of wire bond degradation under power and mechanical accelerated tests

2019-09-01, Czerny, Bernhard, Buhrkal-Donau, Steffen, Popok, Vladimir, Khatibi, Golta, Luo, Haoze, Iannuzzo, Francesco, Pedersen, Kristian Bonderup

Degradation of wire bonds under accelerated power cycling tests is compared to that caused by mechanical high-frequency cycling for commercial power devices. Using micro-sectioning approach and optical microscopy it is found that the bond fracture under the mechanical cycling follows the same tendencies as that found under power cycling. Results of shear tests of the mechanically cycled bonds also agree well with the bond cracking tendencies observed by optical microscopy investigations. It is found that reduction of contact area of the wire at the bond/metallization interface due to the crack development follows the Paris-Erdogan law, which defines the degradation rate leading to wire lift-off. The results obtained on mechanical cycling in the current work also show good agreement with literature data on wire bond fracture under power cycling proving that main mechanism for wire lift-off failure is related to the mechanical stress development at the interface with metallization layer. The carried out study also creates a potential to further develop a high-frequency mechanical cycling into an alternative for reliability analysis of wire bonds. However, more studies have to be performed to compare degradation mechanisms occuring under power and mechanical accelerated tests. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.

No Thumbnail Available
Publication

Versatile ultrasonic fatigue testing method with variable load ratio for small scaled samples

2019-05-16, Czerny, Bernhard, Gasser, Christoph, Khatibi, Golta