Research Outputs

2017 2017 2016 2016 2015 2015 2014 2014 2013 2013 2012 2012 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8 2.0 2.0
Now showing 1 - 5 of 5
  • Publication
    Reliability analysis of Cu wire bonds in microelectronic packages
    (Elsevier, 2016-04-18) ;
    Mazloum-Nejadari, Ali 
    ;
    Khatibi, Golta 
    ;
    Lederer, Martin 
    ;
    Nicolics, Johann 
    ;
    Weiss, Laurens 
    In this study the thermo-mechanical response of 25 μm Cu wire bonds in an LQFP-EPad package was investigated by numerical and experimental means. The aim was to develop a methodology for fast evaluation of the packages, with focus on wire bond fatigue, by combining FEA and mechanical fatigue testing. The investigations included the following steps: (i) simulation of the warpage induced displacements in the encapsulated LQFP-176-Epad package due to temperature changes, (ii) reproducing the thermally induced stresses in the wire bond loops in an unmolded (non-encapsulated) LQFP package using an accelerated multiaxial mechanical fatigue testing set-up under the displacement amplitudes determined in case (i) and determination of the loading cycles to failure (Nf), (iii) FEA of the experiments performed in (ii) based on the boundary conditions determined in (i) to calculate the states of stress and strain in the wire bonds subjected to multiaxial mechanical cyclic loading. Our investigations confirm that thermal and mechanical cyclic loading results in occurrence of high plastic strains at the heat affected zone (HAZ) above the nail-head, which may lead to fatigue failure of the wire bonds in the packages. The lifetime of wire bonds show a proportional relation between the location and angle of the wire bond to the direction of loading. The calculated accumulated plastic strain in the HAZ was correlated to the experimentally determined Nf values based on the volume weighted averaging (VWA) approach and presented in a lifetime diagram (Δd - Nf) for reliability assessment of Cu wire bonds. The described accelerated test method could be used as a rapid qualification test for the determination of the lifetimes of wire bonds at different positions on the chip as well as for related improvements of package design.
      62  1Scopus© Citations 3
  • Publication
    A new approach for evaluation of fatigue life of al wire bonds in power electronics
    (Elsevier, 2014-02-16) ;
    Khatibi, Golta 
    ;
    Lederer, Martin 
    ;
    Kotas, Agnieszka Betzwar 
    ;
    Weiss, Brigitte 
    Ultrasonically bonded A1 wire bonds on A1 metallization pads are widely used in power semiconductors. The required long time reliability of the devices is highly dependent on the interfacial quality of A1 wire and the bond pad. Reliability of wire bonds is commonly assessed by thermal and power cycling tests. Accelerated mechanical fatigue testing can be used as an alternative to these time consuming procedures. In the present study, lifetime of thick A1 wedge bonds on Si substrates was investigated using a novel mechanical fatigue testing technique operating at high frequencies and elevated temperatures. The influence of microstructure, testing temperature and frequency on lifetime of A1 wire bonds was investigated. Finite element analysis was applied to calculate the stress distribution at the interfacial region and to establish life time prediction curves. The results of mechanical isothermal fatigue curves were compared and correlated with thermal cycling data of Al wire bonds. Copyright © 2014 by The Minerals, Metals & Materials Society.
      72  1Scopus© Citations 2
  • Publication
    Thermo-mechanical analysis of bonding wires in IGBT modules under operating conditions
    (Elsevier, 2012-09) ;
    Lederer, Martin 
    ;
    Nagl, Bernhard 
    ;
    Trnka, A. 
    ;
    Khatibi, Golta 
    ;
    Thoben, Markus 
    The lifetime of IGBT (Insulated Gate Bipolar Transistor) modules is limited by thermo-mechanical fatigue. Thereby bonding wires represent the critical links where damage initiation is observed. For the first time Laser Doppler Vibrometer measurements and thermal imaging were employed to determine the temperature-dependent deformations of bond wires at different frequencies under operation conditions. This should be considered as an important step to facilitate more precise life-time predictions of power modules in long term usage.
      43  2Scopus© Citations 76
  • Publication
    A novel approach for evaluation of material interfaces in electronics
    (2016-03-05) ;
    Khatibi, Golta 
    ;
    Lassnig, Alice 
    ;
    Lederer, Martin 
    ;
    Nicolics, Johann 
    ;
    Magnien, Julien 
    ;
    Suhir, Ephraim 
    The rapid technological advancements and market demands in electronic sector requires application of highly accelerated, still practice relevant reliability assessment methods. At present, accelerated power and temperature cycling tests count as the state of the art for qualification of the devices. However due to physical characteristics of the devices, there are limitations to accelerated thermal and power cycling tests. Further acceleration by exceeding a critical temperature or time reduction may result in occurrence of failure mechanisms other than those encountered in real application or suppressing these failures. An alternative approach for further acceleration of the testing procedures is based on the application of isothermal mechanical fatigue testing at high frequencies (AMT). The principle idea of this approach is replacement of thermally induced strains by means of equivalent mechanical strains. Based on a physics of failure approach, the relevant failure modes in the material interfaces are induced enabling detection of weak sites of the devices in a very short duration of time. In addition of time saving factor a further advantage of mechanical fatigue testing is the possibility of decoupling of thermal, mechanical and environmental stress factors for a more effective investigation and diagnosis. This paper presents an overview of our recent reliability studies on different types of electronic components by using the proposed methodology with the aim to give an insights into the advantages and some restrictions of AMT for qualification of electronic devices.
      61  1Scopus© Citations 4
  • Publication
    Reliability of Cu wire bonds in microelectronic packages
    (Elsevier, 2017) ;
    Mazloum-Nejadari, Ali 
    ;
    Khatibi, Golta 
    ;
    Lederer, Martin 
    ;
    Nicolis, Johann 
    ;
    Weiss, Laurens 
    In this study the thermo-mechanical response of 25 μm Cu wire bonds in an LQFP-EPad (Low Profile Quad Flat Exposed Pad) package was investigated by numerical and experimental means. The aim was to develop a meth odology for fast evaluation of the packages, with focus on wire bond fatigue, by combining finite element analysis (FEA) and mechanical fatigue testing. The investigations included the following steps: (i) simulation of the warp age induced displacements in the encapsulated LQFP-176-Epad package due to temperature changes, (ii) repro ducing the thermally induced stresses in the wire bond loops in an unmolded (non-encapsulated) LQFP package using an accelerated multiaxial mechanical fatigue testing set-up under the displacement amplitudes deter mined in case (i) and determination of the loading cycles to failure (Nf), (iii) FEA of the experiments performed in (ii) based on the boundary conditions determined in (i) to calculate the states of stress and strain in the wire bonds subjected to multiaxial mechanical cyclic loading. Our investigations confirm that thermal and mechanical cyclic loading results in occurrence of high plastic strains at the heat affected zone (HAZ) above the nail-head, which may lead to fatigue failure of the wire bonds in the packages. The lifetime of wire bonds show a propor tional relation between the location and angle of the wire bond to the direction of loading. The calculated accu mulated plastic strain in the HAZ was correlated to the experimentally determined Nf values based on the volume weighted averaging (VWA) approached and presented in a lifetime diagram (Δd-Nf) for reliability assessment of Cu wire bonds. The described accelerated test method could be used as a rapid qualification test for the deter mination of the lifetimes of wire bonds at different positions on the chip as well as for related improvements of package design.
      61  1Scopus© Citations 20