Research Outputs

2022 2022 2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 2016 2016 2015 2015 2014 2014 2013 2013 0.0 0.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0
Now showing 1 - 10 of 35
  • Publication
    Step-by-Step Building of a Four Dimensional Fatigue Compatible Regression Model including Frequencies
    (2021-12) ;
    Castillo, Enrique 
    ;
    Fernández Lavín, Alfonso Antonio 
    ;
    Blasón, Sergio 
    ;
    Khatibi, Golta 
    ;
    Zareghomsheh, Mohammad 
    The purpose of this research is to develop a model, with emphasis on compatibility conditions and model building, valid for high cycle fatigue design components such as wind turbines, automobiles, high speed railways and aeronautical material. In this work, we have added the frequency as one more variable to an existing fatigue model that already includes maximum stress, stress ratio and lifetime. As a result, a model and estimation method has been proposed and a random variable V has been identified, which, allows the accumulated damage and the probability of failure to be assessed for any load history in terms of stress levels, stress ranges and frequencies. Finally, the model is validated using a large set of real experimental data.
      194
  • Publication
    Influence of wirebond shape on its lifetime with application to frame connections
    (Elsevier, 2013-04-14) ;
    Khatibi, Golta 
    ;
    Thoben, Markus 
    ;
    Paul, Indrajit 
    The subject of this study was to investigate the effect of different geometrical loop shapes on the reliability of 400 μm thick Al bond wires in IGBT modules by means of experimental and analytical methods. The experimental fatigue tests have been realized by linear cyclic displacements of 5-45 μm of the contact plates at 200 Hz and 20 kHz. Life time curves were obtained for bond wire connections with different loop heights, distances and angles with the main failure mechanism being wire bond heel cracking. Furthermore an analytical model was developed to calculate the effect of variation of geometrical shape parameters on the stress at different locations of the bond wire. This model can be used to make a preliminary geometry selection of the bond wire and to predict the force or stress at critical sites of the wire bond during stress tests. This model was validated with finite element analysis.
      54Scopus© Citations 10
  • Publication
    Electro-thermal analysis of in situ vibration measurements on IGBT modules under operation conditions
    (Elsevier, 2012-09-17) ;
    Nagl, Bernhard 
    ;
    Lederer, Martin 
    ;
    Khatibi, Golta 
    ;
    Thoben, Markus 
    ;
    Nicolics, Johann 
    This paper discusses different application relevant electrical loading cases of an IGBT module of a power inverter. Thereby, different operation conditions such as pulse frequencies, inverter output currents and output frequencies, as well as two different operation modes are discussed. Each load case investigation is conducted by electrical, thermal, and in situ vibration measurements. Moreover, on the base of finite element analyses a deeper insight is gained into reliability relevant thermo-mechanical behavior. For this purpose an IGBT module is operated at a load of 30% to 80% of its nominal value in order to cause representative thermo-mechanical displacements of dies and bond wires. By applying an inverter output frequency in a range of 1 to 280 Hz a temperature ripple of up to 40 K on the dies and a vertical displacement of up to 9 μm on a bond wire is observed. These results are important to improve life-time-predictions.
      43Scopus© Citations 3
  • Publication
    Highly Accelerated Mechanical Lifetime Testing for Wire Bonds in Power Electronics
    (IMAPS, 2022-06) ;
    Khatibi, Golta 
    This article presents various experimental studies on fatigue evaluation of wire bond interconnects and interfaces in electronic devices using an accelerated mechanical fatigue testing system. This dedicated experimental setup is designed to induce fatigue failure in the weak sites of the wire bond by reproducing the thermomechanical failure modes occurring during operation. An exceptional highly test acceleration is achieved by increasing the mechanical testing frequency into the kHz regimen enabling the determination of lifetime curves in a very short time. A com parison of this method to conventional testing methods such as power cycling, a shear testing exploits the potential of customized accelerated mechanical testing. Exemplary studies on the degra dation and fatigue failure of heavy Al wire bonds typically used in power electronics and novel Cu wire bonds are presented and advantages and some restrictions of the proposed method are discussed.
      95
  • Publication
    Experimental investigation of transient electrical, thermal and mechanical behavior of IGBT inverter modules during operation
    (Elsevier, 2013-05-26) ;
    Thoben, Markus 
    ;
    Khatibi, Golta 
    ;
    Lederer, Martin 
    ;
    Nagl, Bernhard 
    ;
    Nicolics, Johann 
    This study comprises the electrical analysis of an experimental investigation on thermo-mechanical vibration measurements on an IGBT inverter structure under operating conditions and shows a new way how to experience reliability relevant phenomena. In order to perform transient temperature measurements with IR thermography and optical vibration measurements one sub-system of the inverter module was extracted and operated at equivalent conditions. Necessary circuit modifications including parasitic impedances and their most important influences are discussed. The investigation revealed a strong dependence of the thermo-mechanical bonding wire vibrations on the inverter output frequency. At 1 Hz an amplitude of more than 4 μm was measured at the loop peak of a short bonding wire.
      49Scopus© Citations 1
  • Publication
    A rapid test for reliability of heavy wire bonds
    (Konradin-Verl. Kohlhammer, 2019-04-17) ;
    Seidl, Siegfried 
    Bond-Drahtverbindungen müssen über mehrere Dekaden und unter hohen thermomechanischen Belastungen zuverlässig halten. Dafür sorgt ein Bondtester mit einem extrem schnellen automatischen Qualitätstest zur Lebensdauerbestimmung der Bond-Drahtverbindungen.
      60
  • Publication
    A fast test technique for life time estimation of ultrasonically welded Cu-Cu interconnects
    (Elsevier, 2010-09) ;
    Khatibi, Golta 
    ;
    Weiss, Brigitte 
    ;
    Licht, T. 
    In this research the quality of the interconnects of the ultrasonically welded Cu terminals to the Cu substrate in the IGBT-module has been investigated. An ultrasonic resonance fatigue system in combination with a laser Doppler vibrometer and a special specimen design was used for shear fatigue testing of these large ultrasonic Cu-Cu welds (about 0.5 cm2). Fatigue life curves up to 109 loading cycles were obtained in a very short period of time. Using this technique it was possible to evaluate the fatigue strength of these interconnects for the first time. The microstructural features of the interconnects were characterized and their crack growth behaviour was studied. Fracture analysis of the fatigued specimen shows that failure occur due to the propagation of the crack beneath the welding interface into the copper substrate. Additionally performed finite element simulations offer an insight into the stress and strain concentrations during the mechanical fatigue tests. As this method is not restricted to the welding geometry, material joints with larger interconnects can be tested likewise. Thus this new technique can be used as a practical and valid fatigue testing method for evaluation of various interconnects.
      46Scopus© Citations 1
  • Publication
    Interface characterization of Cu-Cu ball bonds by a fast shear fatigue method
    (Elsevier, 2020-11) ;
    Khatibi, Golta 
    A highly accelerated shear fatigue testing method is presented to test the long-term reliability and reveal the bonded interface of thermosonic Cusingle bondCu ball bonds. The method is an adaptation to a new industrial fatigue tester (BAMFIT) and can be conducted without an intricate specimen preparation. This method induces mechanical cyclic shear stresses to the Cu nailhead in order to initiate fatigue fracture until lift-off, revealing the actual bonded interface. This study compares the fatigue resistance of Cu wire bonded to coarse and fine grained Cu and Al metallization. The fatigue experiments are accompanied by nano indentation tests, shear tests and finite element analysis. The fatigue results showed the best performance for Cu bonds on coarse grained Cu pads (metallization), followed by those bonded on fine grained Cu while the Cusingle bondAl nailheads failed at least a decade earlier than Cusingle bondCu bonds. Annealing the specimens prior to testing resulted in slight increases in the number of loading cycles to failure (Nf) for Cu bonds as well as for Cusingle bondAl bonds, while the scattering in Nf for Cu bonds increased. Nevertheless the calculated endurance limit of the fatigue data decreases with increasing annealing stages, due to a change in the fracture probability curve. With the ability to compare the fatigue behaviour of the bonded interface within minutes, this method is most suitable for rapid qualification at an early stage of development.
      80Scopus© Citations 1
  • Publication
    Fatigue life time modelling of Cu and Au fine wires
    (2018-05-25) ;
    Khatibi, Golta 
    ;
    Mazloum-Nejadari, Ali 
    ;
    Delshadmanesh, Mitra 
    ;
    Lederer, Martin 
    In this study, the influence of microstructure on the cyclic behaviour and lifetime of Cu and Au wires with diameters of 25μm in the low and high cycle fatigue regimes was investigated. Low cycle fatigue (LCF) tests were conducted with a load ratio of 0.1 and a strain rate of ~2e-4. An ultrasonic resonance fatigue testing system working at 20 kHz was used to obtain lifetime curves under symmetrical loading conditions up to very high cycle regime (VHCF). In order to obtain a total fatigue life model covering the low to high cycle regime of the thin wires by considering the effects of mean stress, a four parameter lifetime model is proposed. The effect of testing frequency on high cycle fatigue data of Cu is discussed based on analysis of strain rate dependency of the tensile properties with the help of the material model proposed by Johnson and Cook.
      67Scopus© Citations 5
  • Publication
    Wire bond degradation under thermo- and pure mechanical loading
    (Elsevier, 2017-09) ;
    Pedersen, Kristian Bonderup 
    ;
    Nielsen, Dennis A. 
    ;
    Khatibi, Golta 
    ;
    Iannuzzo, Francesco 
    ;
    Popok, Vladimir N. 
    ;
    Pedersen, Kjeld 
    This paper presents a fundamental study on degradation of heavy Al bond wires typically used in high power modules. Customized samples are designed to only consist of Al bond wires on standard Si diodes. These samples are subjected to pure mechanical and passive thermal cycling to investigate the bond degradation behavior on a simple system as well as compare these two test methods. Although an appreciable difference in fracture behavior is observed between these two methods, both provide correlation between the number of cycles and degree of degradation, especially in the case of the passive thermal test. To enable investigation of degradation rate a large number of bond interfaces is analyzed and they are found to follow conventional accepted fracture laws like Paris-Erdogan. With additional work this could enable the possibility of obtaining empirical parameters to be used in actual physics based lifetime laws.
      48Scopus© Citations 13