Research Outputs

2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 2016 2016 2015 2015 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0 3.5 3.5 4.0 4.0
Now showing 1 - 10 of 15
  • Publication
    Generic Autonomic Management as a Service in a SOA-based Framework for Industry 4.0
    (IEEE, 2019-10) ; ;
    Delsing, Jerker 
    Cyber-physical production systems are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. In order to make these systems interoperable with each other for addressing Industry 4.0 applications a number of service-oriented architecture frameworks are developed. Such frameworks are composed by a number of services, which are inherently dynamic by nature and thus imply the need for self-adaptation. In this paper we propose generic autonomic management as a service and show how it can be integrated in the Arrowhead framework. We propose generic and reusable interfaces for each phase of the autonomic control loop in order to increase the usability of the service for other frameworks and application systems, while reducing the software engineering effort. To show the utility of our approach in the Arrowhead framework we use a climate control application as a representative example.
      424  1Scopus© Citations 10
  • Publication
    Connected cars — Threats, vulnerabilities and their impact
    (IEEE, 2018-05) ; ;
    Schmittner, Christoph 
    ;
    ; ;
    Delsing, Jerker 
    The growing demand for interoperability between system components within a connected car has led to new security challenges in automotive development. The existing components, based on established technology, are often being combined to form such a connected car. For such established technologies, individual, often sector specific threat and vulnerability catalogs exist. The aim of this paper is to identify blocks of established technologies in a connected car and to consolidate the corresponding threat and vulnerability catalogs relevant for the individual constituent components. These findings are used to estimate the impact on specific system components and subsystems to identify the most crucial components and threats.
      212  1Scopus© Citations 15
  • Publication
    Towards a Security Baseline for IaaS-Cloud Back-Ends in Industry 4.0
    The popularity of cloud based Infrastructure-as-a- Service (IaaS) solutions is becoming increasingly popular. However, since IaaS providers and customers interact in a flexible and scalable environment, security remains a serious concern. To handle such security issues, defining a set of security parameters in the service level agreements (SLA) between both, IaaS provider and customer, is of utmost importance. In this paper, the European Network and Information Security Agency (ENISA) guidelines are evaluated to extract a set of security parameters for IaaS. Furthermore, the level of applicability and implementation of this set is used to assess popular industrial and open-source IaaS cloud platforms, respectively VMware and OpenStack. Both platforms provide private clouds, used as backend infrastructures in Industry 4.0 application scenarios. The results serve as initial work to identify a security baseline and research needs for creating secure cloud environments for Industry 4.0.
      171Scopus© Citations 5
  • Publication
    Establishing a Chain of Trust in a Sporadically Connected Cyber-Physical System
    (IEEE, 2021-05) ; ; ;
    Stummer, Anna 
    ;
    ; ;
    Pirker, Dominic 
    ;
    Schmittner, Christoph 
    ;
    Delsing, Jerker 
    Drone based applications have progressed significantly in recent years across many industries, including agriculture. This paper proposes a sporadically connected cyber-physical system for assisting winemakers and minimizing the travel time to remote and poorly connected infrastructures. A set of representative diseases and conditions, which will be monitored by land-bound sensors in combination with multispectral images, is identified. To collect accurate data, a trustworthy and secured communication of the drone with the sensors and the base station should be established. We propose to use an Internet of Things framework for establishing a chain of trust by securely onboarding drones, sensors and base station, and providing self-adaptation support for the use case. Furthermore, we perform a security analysis of the use case for identifying potential threats and security controls that should be in place for mitigating them.
      126  1
  • Publication
    On the Cost of Security Compliance in Information Systems
    (International Institute of Informatics and Systemics, 2019) ; ; ;
    Aldrian, Andreas 
    ;
    The onward development of information and communication technology has led to a new industrial revolution called Industry 4.0. This revolution involves Cyber-Physical Production Systems (CPPS), which consist of intelligent Cyber-Physical Systems that may be able to adapt themselves autonomously in a production environment. At the moment, machines in industrial environments are often not connected to the internet, which thus needs a point-to-point connection to access the device if necessary. Through Industry 4.0, these devices should enable remote access for smart maintenance through a connection to the outside world. However, this connection opens the gate for possible cyber-attacks and thus raises the question about providing security for these environments. Therefore, this paper used an adapted approach based on SixSigma to solve this security problem by investigating security standards. Security requirements were gathered and mapped to controls from well known security standards, formed into a catalog. This catalog includes assessment information to check how secure a solution for a use case is and also includes a link to an estimation method for implementation cost. Thus this paper’s outcome shows how to make Industry 4.0 use cases secure by fulfilling security standard controls and how to estimate the resulting implementation costs.
      570  2792
  • Publication
    Interacting with the Arrowhead Local Cloud: On-boarding Procedure
    (IEEE, 2018-05) ; ;
    Hegedűs, Csaba 
    ;
    ;
    Delsing, Jerker 
    ;
    Eliasson, Jens 
    Industrial automation systems are advancing rapidly and a wide range of standards, communication protocols and platforms supporting the integration of devices are introduced. It is therefore necessary to design and build appropriate tools and frameworks that allow the integration of devices with multiple systems and services. In this work we present the Arrow-head Framework, used to enable collaborative IoT automation and introduce two support core systems, SystemRegistry and DeviceRegistry, which are needed to create a chain of trust from a hardware device to a software system and its associated services. Furthermore, we propose an on-boarding procedure of a new device interacting with the Arrowhead local cloud. This ensures that only valid and authorized devices can host software systems within an Arrowhead local cloud.
      179  1Scopus© Citations 28
  • Publication
    Automated and Secure Onboarding for System of Systems
    (IEEE, 2021-08-03) ; ; ; ;
    Péceli, Bálint 
    ;
    Singler, Gábor 
    ;
    Kovács, Kristóf 
    ;
    ;
    Delsing, Jerker 
    The Internet of Things (IoT) is rapidly changing the number of connected devices and the way they interact with each other. This increases the need for an automated and secure onboarding procedure for IoT devices, systems and services. Device manufacturers are entering the market with internet connected devices, ranging from small sensors to production devices, which are subject of security threats specific to IoT. The onboarding procedure is required to introduce a new device in a System of Systems (SoS) without compromising the already onboarded devices and the underlying infrastructure. Onboarding is the process of providing access to the network and registering the components for the first time in an IoT/SoS framework, thus creating a chain of trust from the hardware device to its hosted software systems and their provided services. The large number and diversity of device hardware, software systems and running services raises the challenge to establish a generic onboarding procedure. In this paper, we present an automated and secure onboarding procedure for SoS. We have implemented the onboarding procedure in the Eclipse Arrowhead framework. However, it can be easily adapted for other IoT/SoS frameworks that are based on Service-oriented Architecture (SoA) principles. The automated onboarding procedure ensures a secure and trusted communication between the new IoT devices and the Eclipse Arrowhead framework. We show its application in a smart charging use case and perform a security assessment.
      154  1Scopus© Citations 7
  • Publication
    A Lightweight Authentication Mechanism for M2M Communications in Industrial IoT Environment
    (2019)
    Esfahani, A. 
    ;
    Mantas, G. 
    ;
    Matischek, R. 
    ;
    Saghezchi, F. 
    ;
    ; ; ;
    Schmittner, Ch. 
    ;
    Bastos, J. 
    In the emerging industrial Internet of Things (IIoT) era, machine-to-machine (M2M) communication technology is considered as a key underlying technology for building IIoT environments, where devices (e.g., sensors, actuators, and gateways) are enabled to exchange information with each other in an autonomous way without human intervention. However, most of the existing M2M protocols that can be also used in the IIoT domain provide security mechanisms based on asymmetric cryptography resulting in high computational cost. As a consequence, the resource-constrained IoT devices are not able to support them appropriately and thus, many security issues arise for the IIoT environment. Therefore, lightweight security mechanisms are required for M2M communications in IIoT in order to reach its full potential. As a step toward this direction, in this paper, we propose a lightweight authentication mechanism, based only on hash and XOR operations, for M2M communications in IIoT environment. The proposed mechanism is characterized by low computational cost, communication, and storage overhead, while achieving mutual authentication, session key agreement, device's identity confidentiality, and resistance against the following attacks: replay attack, man-in-the-middle attack, impersonation attack, and modification attack.
      562  941Scopus© Citations 213
  • Publication
    Towards Resilience Metrics for Future Cloud Applications
    (2016)
    Novak, Marko 
    ;
    Shirazi, Syed Noorulhassan 
    ;
    Hudic, Aleksandar 
    ;
    Hecht, Thomas 
    ;
    ;
    Hutchison, David 
    ;
    ;
    An analysis of new technologies can yield insight into the way these technologies will be used. Inevitably, new technologies and their uses are likely to result in new security issues regarding threats, vulnerabilities and attack vectors. In this paper, we investigate and analyse technological and security trends and their potential to become future threats by systematically examining industry reports on existing technologies. Using a cloud computing use case we identify potential resilience metrics that can shed light on the security properties of the system.
      147  1Scopus© Citations 4