Publications

2020 2020 2019 2019 0.0 0.0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0
Now showing 1 - 2 of 2
  • Publication
    Towards a secure and self-adapting smart indoor farming framework
    (Springer, 2019-10-21) ; ; ;
    Schmittner, Christoph 
    ;
    Christl, Korbinian 
    ;
    Knapitsch, Johannes 
    ;
    Parapatits, Martin 
    Facing the increase in world population and the stagnation in available arable land there is a high demand for optimizing the food production. Considering the world-wide and ongoing reduction of the agricultural labor force novel approaches for food production are required. Vertical farming may be such a solution where plants are being produced indoors in racks, cared by robotic appliances which will be operated by specialized software. Given the multitude of parameters which determine the ideal condition, a lot of data needs to be acquired. As this data is used to adapt the entire Cyber-Physical System to a changing environment the data has to be secure and adaptations have to consider safety aspects as well. Such systems must hence be secure, safe, scalable and self-adaptable to a high degree. We present an important element for such solutions, a cloud, IoT and robotic based smart farming framework.
      611  40202Scopus© Citations 16
  • Publication
    A recommendation for suitable technologies for an indoor farming framework
    (Springer, 2020) ; ;
    Schmittner, Christoph 
    ;
    ;
    Christl, Korbinian 
    ;
    Knapitsch, Johannes 
    ;
    Parapatits, Martin 
    Facing food insecurity and overuse of resources due to effects of climate change, humanity needs to find new ways to secure food production and produce close to consumers. Vertical farming, where plants are grown in vertical arrays inside buildings with help of Information and Communication Technology (ICT) components, could contribute to solving this issue. Such systems integrate heterogeneous devices on different computing layers and acquire a lot of data to monitor and optimize the production process. We created an indoor testing unit in which growing conditions can be monitored and controlled to optimize growth of microgreens. This setup includes an Indoor Farming Support as a Service (IFSaaS) prototype that provides safe and secure monitoring and controlling, as well as self-adaption of an indoor farming system. In this article we provide information about the combination of most suitable technologies.
      601  42220Scopus© Citations 7