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Abstract—A novel procedure for automated determination of 

air change rates from measured indoor CO2 concentrations is 

proposed. The suggested approach builds upon a new algorithm to 

detect exponential build-up and decay patterns in CO2 

concentration time series. The feasibility of the concept is proved 

with a test run on synthetic data that shows a good reproduction 

of the previously defined air change distribution. The 

demonstration continues with test runs on CO2 datasets measured 

in the kitchen and the sleeping room of two residential buildings. 

The derived air change rates were within the expected 

distributions and ranges in both cases when natural or mechanical 

ventilation was used. 
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I. INTRODUCTION 

In industrial nations, buildings are responsible for 20 to 40 % 
of the total energy consumption. In the EU and in the USA the 
energy demand of buildings is above industry and 
transportations [1]. Hence, the efficiency improvement of 
Heating, Ventilation and Air Conditioning (HVAC) systems is 
substantial to reduce the primary energy consumption and the 
greenhouse gas emissions. 

The energy loss by transmission through the building 
envelope is successively reduced due to stricter building 
regulations and design specifications for insulation. 
Consequently, the share of the energy losses caused by 
ventilation increased in the recent years and the demand of 
intelligent monitoring systems arose. For quantification of the 
natural or mechanical ventilation losses usually the air change 
rate is used. According to (1) the air change or exchange rate n 

in 1/h is defined as the ratio of the supply air flow rate 𝑉̇𝑠𝑢𝑝 in 

m³/h to the volume of the related zone or room 𝑉𝑅 in m³ and 
describes how often the volume is exchanged with fresh air 
within one hour by natural and/or mechanical ventilation. 

 𝑛 = 𝑉̇𝑠𝑢𝑝 𝑉𝑅⁄  

On the one hand, a continuous and sufficient air exchange, 
especially in occupied buildings, is important to ensure a 
satisfying indoor air quality, which is declined by various 
interior pollutions like emissions from humans, furniture or 

building materials. On the other hand, an increased air exchange 
above an adequate hygienic level causes unnecessary energy 
consumption of the building, since the ambient air needs to be 
conditioned to comfortable values and transported or distributed 
by the HVAC systems. 

Under defined boundary conditions like constant pressure 
differences, the tightness of the building envelope and therefore 
the air change by infiltration is constant and can be quantified 
e.g. by blower door tests. In practice, the occurring air change 
rates are subject to strong fluctuations depending on the 
changing overall conditions, like wind speed and direction, 
temperature differences between in- and outdoor and different 
kinds of manual window ventilations. In [2] the air change rates 
derived from experiments in a test room comprise four orders of 
magnitude from 10-1 to 10² 1/h if various window ventilation 
modes from closed, tilted, wide open to cross ventilation are 
applied. The air change rate is of course not only influenced by 
natural ventilation. In fact, if appropriated systems are installed, 
the supplying and exhausting air flow rates are predominantly 
defined by the mechanical ventilation. The mentioned factors 
together with a varying user behavior lead to a unique 
distribution of air change rates for each building. The 
experimental study of [3] investigated the air change rates in an 
occupied town house over one year, collecting 4656 samples 
with a median value equal to 0.49 1/h. The strongest influences 
on the air change were open windows and the use of an attic fan 
resulting in the skewed distribution to higher air change rates in 
Fig. 1 in which unequally divided percentiles are plotted. A log-
normal distribution, as proposed by the authors, is added. 

Determining realistic air change rate distributions on the spot 
helps considerably to further improve control and monitoring 
strategies of HVAC components. The data sets could be used in 
holistic energy management systems for automatic fault 
detection of ventilation systems or in model predictive control 
applications to predict the demand of heating and cooling 
energy. The ongoing innovations in the sensor industry and 
wireless data transmission make it possible to meet the technical 
requirements for a continuous, distributed and cost effective 
monitoring of the air quality inside the smart buildings of the 
future. The huge amount of data delivered by the sensors 
encapsulates valuable information about the building 
performance, yet the operators must first master the challenge to 
extract the relevant information. 



 

Fig. 1. Distribution of air change rates in an occupied residential townhouse 

derived during a one-year experiment with 4656 samples done by [3]. 

In this paper, a novel procedure for automatically 
determining the air change rates from measurements of the CO2 
concentration in occupied rooms is proposed. This procedure 
builds upon a new algorithm for detecting segments in the 
measured data with exponential behavior. The resulting method 
enables the stand-alone statistical evaluation of air change rates 
to further improve HVAC efficiency. Finally, it opens up new 
possibilities as statistical tool for scientific investigations of air 
change rate distributions. 

II. DETERMINING THE AIR CHANGE RATE FROM CO2 DATA 

The air change rate within a room or a single zone is usually 
determined from tracer gas measurements. Thereby a certain 
amount of tracer gas is released into the room and the tracer gas 
dilution is examined. According to the relevant ASTM 
(American Society for Testing and Materials) standard [4] three 
main methods exist for the determination of the air change rate 
using tracer gases: the concentration decay method, the constant 
injection method and the constant concentration method. 

A. Underlying physical model and assumptions 

For each method the underlying model is based on the mass 
balance equation of the tracer gas in a closed volume as given 
by (2) for a constant tracer gas density. The defined volume rates 

𝑉̇ in m³/h and tracer gas concentrations 𝐶 per m³ for the supply 
and exhaust air stream as well as a tracer gas source 𝑆 inside the 
volume, in m³/h, define the tracer gas concentration 𝐶𝑅 in the 
room volume 𝑉𝑅 in m³ over the time t in h. 

 𝑉̇𝑠𝑢𝑝 ∙ 𝐶𝑠𝑢𝑝 − 𝑉̇𝑒𝑥ℎ ∙ 𝐶𝑒𝑥ℎ + 𝑆 = 𝑉𝑅 ∙ 𝑑𝐶𝑅 𝑑𝑡⁄  

Under the assumptions that (i) 𝑉̇𝑠𝑢𝑝 = 𝑉̇𝑒𝑥ℎ , (ii) the tracer gas 

is ideally mixed inside the balance room, and (iii) the tracer gas 
is chemically stable and inert, as claimed in [5], (2) can be 
further simplified resulting in the ordinary differential equation 
(3) for 𝐶𝑅. 

 𝑉̇𝑠𝑢𝑝 𝑉𝑅⁄ (𝐶𝑠𝑢𝑝 − 𝐶𝑅) + 𝑆 𝑉𝑅⁄ = 𝑑𝐶𝑅 𝑑𝑡⁄  

Assuming that the initial tracer gas concentration 𝐶𝑅 at time 
𝑡 = 0 is equal to the value 𝐶𝑅,0, the tracer gas concentration 𝐶𝑅 

at time 𝑡 given in (4) is obtained by integrating (3). 

𝐶𝑅(𝑡) = 𝐶𝑠𝑢𝑝 + 𝑆 𝑉̇𝑠𝑢𝑝⁄ +

+(𝐶𝑅,0 − 𝐶𝑠𝑢𝑝 − 𝑆 𝑉̇𝑠𝑢𝑝⁄ ) exp(−(𝑉̇𝑠𝑢𝑝 𝑉𝑅⁄ ) ∙ 𝑡) 

The sign of the coefficient 𝐵 = (𝐶𝑅,0 − 𝐶𝑠𝑢𝑝 − 𝑆 𝑉̇𝑠𝑢𝑝⁄ ) in 

front of the exponential term defines whether a transient event 
increases (-) or decreases (+) the tracer gas concentration. The 
resulting equilibrium concentration 𝐶𝐸𝑞𝑢 is given by 𝐶𝑠𝑢𝑝 +

𝑆 𝑉̇𝑠𝑢𝑝⁄ . Furthermore, taking the definition of the air change rate 

from (1) into account, (4) can be shortened to (5) with only three 
parameters left. 

 𝐶𝑅(𝑡) = 𝐶𝐸𝑞𝑢 + 𝐵 ∙ exp(−𝑛 ∙ 𝑡) 

In the established tracer gas concentration decay method as 
described in [4], the air change rate 𝑛 is calculated based on an 
exponential concentration decrease characterized in (5) by the 
difference between the logarithms of two measured tracer gas 
concentrations divided by the time period in between and 
assuming 𝐶𝐸𝑞𝑢 = 0. 

B. Usage of CO2 as a tracer gas 

The European standard describing tracer gas dilution 
methods [6] lists six commonly used tracer gases for the 
determination of the airflow rate in buildings - carbon dioxide 
(CO2), helium, ethylene, sulfur hexafluoride (SF6), nitrous oxide 
(N2O) and halogenated hydrocarbons like perfluoro carbons 
(PFCs). Besides the previously mentioned non-reactivity of the 
tracer gas, [7] quoted additional requirements for tracer gases 
like non-toxic and non-allergenic, non-flammable or explosive 
and not harmful to the environment. The high global warming 
potential of SF6, PFCs and N2O is to be noted. Furthermore, the 
concentration of tracer gas in the ambient air should be low 
compared to the attainable indoor concentrations and the tracer 
gas should be detectable with adequate accuracy in a cost-
effective way. 

CO2 as a tracer gas fulfills most of the required 
characteristics while reaching typical indoor concentrations 
below a few thousand ppmv. Additionally, it has a property other 
tracer gases do not have, namely, it is naturally generated 
through metabolic production by humans in occupied rooms. In 
[8], the CO2 emission per person is considered to be between 15 
and 180 l/h, depending on the degree of activity. Hence, a 
synthetic tracer gas injection is not necessary if limiting 
parameters are taken into account. 

For instance, [9] notes that the standardized tracer gas 
concentration decay method with single measurements assumes 
that no source of tracer gas is within the building envelope, 
requiring an unoccupied building while measuring. 
Additionally, the tracer gas concentration should be uniform 
without local gradients, which may be difficult to achieve in 
buildings with both occupied and unoccupied areas. Due to the 
varying CO2 emissions by humans, a predefined injection rate 
can also not be guaranteed when occupant-generated CO2 is 
used as a tracer gas, making methods based on constant tracer 



gas concentration inapplicable, if high accuracy is required. 
Therefore, the authors in [2] recommend to derive the air change 
rate from CO2 time series with statistical evaluation of 
exponential patterns by linear or non-linear regression analysis: 

 In the linear regression approach, the source term 𝑆 needs 
to be zero while a CO2 decay curve is measured 
continuously. After subtracting the measured or 
estimated outdoor CO2 concentration from the indoor 
concentration 𝐶𝑅, (4) can be logarithmised to a linear 
relation and the air change rate 𝑛 can be identified as the 
gradient in a linear regression. 

 The non-linear regression approach requires a constant, 
possibly zero, source term 𝑆 and a constant supply air 

flow 𝑉̇𝑠𝑢𝑝 and concentration 𝐶𝑠𝑢𝑝. The equation (5) is 

adjusted by non-linear regression (iterative curve fitting) 
to make it agree with the experimental data, which can 
consist of either decay or build-up curves. This approach 
enables deriving both the air change rate 𝑛 and the 
equilibrium concentration 𝐶𝐸𝑞𝑢. 

Examples for both approaches can be found in the literature: 
[2], [10] and [11] calculated multiple air change rates by linear 
regression, whereas [2], [12], [13] and [14] used direct data 
fitting with an exponential function. The authors in [2], [11] and 
[13] derived the air change rate from both CO2 and SF6 
concentration measurements and compared the results. In [14], 
the results were compared with defined air change rates in a 
climate chamber. In all cases, the validations suggest that the air 
change rates derived from the statistical evaluations of the CO2 
concentration curves were good approximations. 

C. Proposal of statistical evaluation by automatic detection 

In the previously mentioned tracer gas studies the air change 
rates were determined in dedicated experimental investigations 
in which the CO2 concentration was measured over a defined 
time period (e.g. a few days) with distinct build-up and decay 
phases. The statistical evaluation, in particular the selection of 
appropriate CO2 data sections with exponential shape, was done 
manually for each experimental run. 

In Fig. 2, a CO2 concentration time series over one week, 
measured in a residential single-family house, with a sample rate 
of 0.2 S/min, is displayed. The experimental data was originally 
recorded for passive indoor air quality monitoring and not for 
the purpose of air change studies. Nevertheless, multiple time 
periods with exponential shapes, mainly decay behavior, can be 
observed in the measured data. Assuming that the supply air 
flow and concentration as well as the number of occupants in the 
room remained constant during these time periods, the air 
change rates can be determined by fitting (5) to the individual 
exponential sections. Due to overall fluctuations of the 
influencing conditions, the assessment of air change rates needs 
a long-term observation of the CO2 concentrations, leading to 
possibly many exponential sections in the CO2 curve. 
Identifying the exponential sections for analysis requires an 
automatic detection tool, since the traditional manual detection 
is not feasible for big data series. 

In the following, a novel algorithm for detecting exponential 
build-up and decay patterns in indoor CO2 concentration data 

series is proposed. This procedure is the main technical 
contribution of the current paper and provides the basis for 
automatic derivation of air change rates from measured CO2 
concentration data. 

 

Fig. 2. Examplary CO2 data in residential home shows exponential behaviour. 

III. EXPONENTIAL PATTERN RECOGNITION 

Briefly, the proposed algorithm fits the simplified 
exponential model in (5) to the experimental data sets by using 
non-linear regression with iterative calculation of the model 
parameters. The main challenge that the algorithm addresses is 
the automatic detection of time segments with exponential build-
ups and decays in which the curve fitting determines the 
requested air change rate 𝑛 and the parameters 𝐶𝐸𝑞𝑢 and 𝐵. The 

crucial ingredient of the algorithm is the method that assesses 
the quality of a fit, i.e. the measure of how well the data 
represents an exponential behavior according to (5). In the 
following, the established coefficient of determination 𝑅2 - a 
function of the residual sum of squares (RSS) and the total sum 
of squared errors (TSS) as shown in (6) - is used to measure the 
goodness of fit. 

 𝑅2 = 1 − (𝑅𝑆𝑆 𝑇𝑆𝑆⁄ ) 

A. Algorithm formulation 

The algorithm for automatic detection of sections with 
exponential behavior checks iteratively the entire CO2 
concentration data set. The first iteration starts with the first data 
point in the CO2 data set. An iteration 𝑘, 𝑘 >  1, starts at the 
data point where the previous iteration 𝑘 − 1 ended, that is, the 
sections analyzed by two consecutive iterations are adjacent. At 
each iteration, a section with exponential behavior is returned, if 
one is found; otherwise, the end of the data set is reached and 
the algorithm terminates. Given a data set of CO2 concentrations, 
the ith data point is denoted by (𝑡𝑖, 𝑦𝑖), where 𝑦𝑖 is the CO2 
concentration value at time 𝑡𝑖. The coefficient of determination 
𝑅2 corresponding to the data points from the interval [𝑖: 𝑗] 
ranging from i to j, i < j, is denoted by 𝑅2[𝑖: 𝑗]. A predefined 
minimal fit length 𝑓𝑚𝑖𝑛 (made dimensionless by the sample rate) 

and a minimal coefficient of determination 𝑅𝑚𝑖𝑛
2  are set. To 

identify segments that match exponential behavior, the 
algorithm checks iteratively the entire CO2 concentration data 
set by performing three consecutive steps to (I) search for a 
promising match, (II) optimizing the start time of the match and 
(III) optimizing its fit length. 



I) THE SEARCH FOR A PROMISING MATCH 

The algorithm searches the data set and looks for time 

intervals [𝑖: 𝑖 + 𝑓𝑚𝑖𝑛] such that 𝑅2[𝑖: 𝑖 + 𝑓𝑚𝑖𝑛] ≥ 𝑅𝑚𝑖𝑛
2 . If such 

a candidate is found, the algorithm moves to the step II of the 
iteration; otherwise, the end of the data set must have been 
reached and the algorithm terminates. 

II) OPTIMIZING THE START TIME 

The segment [𝑖: 𝑖 + 𝑓𝑚𝑖𝑛] such that 𝑅2[𝑖: 𝑖 + 𝑓𝑚𝑖𝑛] ≥ 𝑅𝑚𝑖𝑛
2  

found in step I matches in a satisfactory manner an exponential 
shape. However, the starting point i of the match may not be 
optimal. Step II attempts to optimize the starting point by 
shifting it forward along the measured data set until the stopping 
criteria 𝑅2[𝑖: 𝑖 + 𝑓𝑚𝑖𝑛] > 𝑅2[𝑖 + 1: 𝑖 + 1 + 𝑓𝑚𝑖𝑛] holds. 
Finally, the algorithm selects the starting point of the fit with the 
highest 𝑅2 and moves to step III. 

III) OPTIMIZING THE FIT LENGTH 

Step III starts from [𝑖: 𝑖 + 𝑓0] with 𝑓0 = 𝑓𝑚𝑖𝑛  and iteratively 
extends the fit length to fk = fk-1+1, k = 1, 2, …, as long as the 
variation of 𝑅2 between two consecutive steps remains within a 
predefined boundary Δ𝑅𝑚𝑎𝑥

2 , that is, as long as 𝑅2[𝑖: 𝑖 + 𝑓𝑘−1] −
𝑅2[𝑖: 𝑖 + 𝑓𝑘] ≤ 𝛥𝑅𝑚𝑎𝑥

2  holds. The final fit length is then 
obtained by backtracking to the last best value, setting the final 
𝑓𝑘 at the last local maximum in the 𝑅2 sequence. For a robust 
detection of the stop criteria, the sensibility for the 𝑅2 decrease 
is adjusted to the current fit length so that, for a larger amount of 
data, a single outlier has minor impact on the total goodness of 
fit. Δ𝑅𝑚𝑎𝑥

2 (𝑓𝑘) is therefore obtained by linear  interpolation 

between two predefined values ∆𝑅ℎ𝑖𝑔ℎ
2  and ∆𝑅𝑙𝑜𝑤

2  at specified 

fit lengths 𝑓1 and 𝑓2 according to Fig. 3. 

 

Fig. 3. Adjustment of Δ𝑅𝑚𝑎𝑥
2  over fitlength 𝑓𝑘 between predefined constants. 

To illustrate the developed method for step III, Fig. 4 depicts 
on the left y-axis a part of the CO2 data from Fig. 2 with an 
automatically detected exponential fit on the grey background. 
The sequence of the corresponding R2-values is given on the 
right y-axis by the black continuous line starting after the 
predefined minimal fit length, here 𝑓𝑚𝑖𝑛 = 3 h. The R2 behavior 
seen in Fig. 4 is typical for most of the detected fits. When the 
fit length exceeds the acceptable exponential shape, R2 
deteriorates drastically compared to rather small previous 
fluctuations. This sharp drop triggers the stop criteria of the 
algorithm in step III. 

B. Specification of parameters, pre- and post-processing 

To apply the algorithm, several predefined constants have to 
be set manually by the user. However, the performance of the 
algorithm is not affected significantly if values from specific 
ranges are chosen. For example, the parameters fmin and R2

min 
give just the initial values of a detected match, which are 
iteratively extended or improved in most of the cases. Since the 

shapes of exponential patterns in indoor CO2 datasets are 
typically within similar ranges, the values for fmin and R2

min, as 

well as for the constants R2
high and R2

low at the fit lengths f1 
and f2 do not necessarily need an individual adjustment for 
different data sets. The authors recommend the parameter setting 
from Table I and II, used for test runs on three different datasets. 

 

Fig. 4. Left y-axis: Section of the CO2 data from Fig. 2 with an automatically 

detected exponential fit. Right y-axis: results of R2 values computed in step III. 

In order to further improve the detection quality, the original 
dataset can be first filtered to reduce noise as it was done in the 
example shown in Fig. 4. The noise suppression facilitates the 
detection for the stop criteria in step II and III, since the 𝑅2 
trends are smoothed. To support the fitting process and reduce 
the calculation time, custom initial values, considering well-
known physical ranges, can be set for the optimization of the 
parameters in (5). Furthermore, the coefficients can also be 
restricted by predefined bounds. For instance, in the case that 
only exponential curves with steady state concentrations near the 
ambient air level are of interest, 𝐶𝐸𝑞𝑢 can be bound to a specific 

ambient air concentration. In addition, the coefficient 𝐵 can be 
bounded between 0 and +∞ for exclusive recognition of decay 
curves. On the other hand, if B is predefined with a negative 
sign, only build-up curves will be detected (assuming negative 
exponents). The parameter restrictions can also be done in a 
post-processing procedure to check the validity of each 
exponential fit. For example, fits with insufficient fit lengths or 
unphysical values for the air change rate or the equilibrium 
concentration can be automatically rejected in the final results. 

IV. PROOF OF CONCEPT 

To demonstrate the feasibility of the proposed automatic 
determination of air change rates in CO2 datasets by exponential 
pattern recognition, the algorithm is tested on both synthetically 
generated CO2 data and real CO2 data from two experimental 
investigations in residential buildings. In the present study, the 
computational environment of MATLAB R2016a is used. The 
curve fitting is performed by invoking the ‘fit’ function with the 
‘NonlinearLeastSquare’ method and the ‘Trust-Region’ 
optimization. 

A. Test run with synthetic data 

A synthetic dataset, over a time period of ten years, is 
generated by a finite difference simulation of the differential 
equation for 𝐶𝑅 stated in (3). To include random phenomena, 
several random numbers are used to create a distributed 
occupancy profile and alternating air change rates. The 



probability that the room is occupied by 0/1/2 persons is set to 
0.5/0.3/0.2. The occupation duration is normally distributed with 
mean 8/6/4 hours and a standard deviation of 2 hours each. One 
person emits 17 l/h CO2 into a room of volume VR = 50 m³. The 
air change rate varies every 24 hours and is normal distributed 
with a mean value 𝜇 of 0.8 1/h and a standard deviation 𝜎 of 
0.1 1/h. The CO2 concentration in the supply air is set to 
Csup = 400 ppmv. To imitate a random error in the CO2 dataset 
with a sample rate of 0.2 S/min, the simulation result is 
artificially normal distributed with a standard deviation 𝜎 of 
50/3 ppmv. This means that 99.73 % of the data is within the 
error interval ±50 ppmv, which is a typical error for common 
CO2 measuring instruments. In Table I the applied parameter 
setting for the exponential pattern recognition algorithm is listed. 
The coefficients were restricted during the fitting to the stated 
upper and lower bounds for exclusive determination of decay 
curves. No additional post-processing was done. 

TABLE I.  PARAMETER SETTING FOR TEST RUN WITH SYNTHETIC DATA 

 CEqu in ppmv B n in 1/h 

Lower bound 0 0 0 

Upper bound 5000 +Inf 100 

Initial value 400 0 1 
    

R2
min fmin in h R2

high(f1 = 3 h) R2
low(f2 =10 h) 

0.99 3 0.001 0.0001 

 

Before applying the curve-fitting algorithm, the data was 
smoothed by a central moving average filter with a total extent 
of five data points. Over the artificially generated ten-year 
period, the algorithm detects 3756 exponential decay curves. 
The obtained distribution of air change rates is plotted in 
histogram form in Fig. 5. The probability density function for 
the normal distribution calculated from the sample mean 𝑥̅ and 
the sample standard deviation 𝑠 of the derived air change rates 
(continuous line) and the probability function of the original 
normal distribution (dashed line) used to generate the synthetic 
data are depicted in Fig. 5 as well. 

 

Fig. 5. Distribution of 3756 air change rates (recog.) automatically derived 

from the synthetic CO2 data generated by a normal distributed air change. 

The calculated distribution turns out to be a good 
approximation of the original distribution, confirmed also when 
comparing the statistical coefficients, i.e. mean value and 
standard deviation, of the two distributions. 

B. Test runs with experimental data 

For the test runs on real data, indoor CO2 concentration 
measurements in two residential buildings located in Austria 
were used. The first building is a single-family house that is 
natural ventilated through leakages in the building envelope; 
additionally, it can be ventilated manually by window 
ventilation. An infrared CO2 sensor was placed in a central 
position in the kitchen, which is connected to the living room 
resulting in a total zone volume of 161 m³. The second 
measurement was done in an apartment equipped with a 
mechanical supply and exhaust airflow system. This time, an 
infrared CO2 sensor was placed in a sleeping room with a room 
volume of 39 m³. In both experiments, the specified 
measurement uncertainty of the installed CO2 sensors was 
±50 ppmv without any indication of the error distribution. In the 
naturally ventilated single-family house, the CO2 concentration 
was measured continuously over a three month winter period 
with a sample rate 0.2 S/min. In the mechanically ventilated 
apartment, the measurement lasted for four and a half months in 
the summer period with a sample rate of 0.1 S/min. The same 
parameter setting for the exponential pattern recognition, listed 
in Table II, was used in both experiments. The coefficients were 
restricted to focus on exponential decay curves with an 
equilibrium CO2 concentration of the ambient air between 350 
and 450 ppmv. Except for smoothing the data with the 
previously mentioned moving average filter, no additional pre- 
or post-processing was done. 

TABLE II.  PARAMETER SETTING FOR TEST RUNS WITH EXPERIM. DATA 

 CEqu in ppmv B n in 1/h 

Lower bound 350 -Inf 0 

Upper bound 450 +Inf 100 

Initial value 400 0 1 
    

R2
min fmin in h R2

high(f1 = 3 h) R2
low(f2 =10 h) 

0.99 3 0.001 0.0001 

 

The results from both testruns are displayed by overlapping 
histograms in Fig. 6. The probability density functions for a 
normal respectively log-normal distribution calculated from the 
sample means and the sample standard deviations of the derived 
air change rates are shown by the continuous lines. 

 

Fig. 6. Distribution of automatically derived air change rates from CO2 data in 

the kitchen of a naturally ventilated single-family house (139 counts) and in the 

sleeping room of a mechanically ventilated apartment (204 counts). 

  



For the naturally ventilated single-family house, plotted in 
white colored bars, the 139 detected air change rates correspond 
to a symmetric normal distribution with a total arithmetic mean 
of 0.5216 1/h and a median value equal to 0.5156 1/h, which are 
typical values for a naturally ventilated building.  

In the monitored sleeping room of the apartment, 204 air 
change rate values were recognized and plotted with grey 
colored bars in Fig. 6. In contrast to the naturally ventilated 
family house, the air change rate distribution in the mechanically 
ventilated apartment is skewed to the right and the arithmetic 
mean of 0.4133 1/h as well as the median value of 0.2914 1/h is 
lower, but still in an expected range. The skewed distribution 
towards higher air change rates, which is close to a log-normal 
distribution, has also been discovered by [3], based on one-year 
measurements in a town house (cf. Fig. 1). In the experimental 
study the air change rates increased in the summer months due 
to a temperature controlled attic fan and window ventilation by 
the occupants. Since the CO2 measurements in the family house 
took place in the winter period, manual window ventilation with 
higher air change is not to be expected. This seasonal effect may 
explain the symmetric distribution of air change rates in the 
single-family house. 

Note that in case of a multi-zonal building, air may enter 
from an adjacent zone. The inter-zonal air flows often do have 
CO2 concentrations above ambient air level, so that a single-
zone mass balance model like (2) leads to an air change rate 
based on an equivalent outdoor airflow as mentioned in [11]. 

V. CONCLUSION AND FUTURE WORK 

A novel procedure for automatic determination of air change 
rates from CO2 concentrations measured in indoor occupied 
rooms was proposed. The method builds upon a new algorithm 
for detecting exponential build-up and decay patterns in CO2 
time series. The feasibility of the concept was first proved with 
a test run on synthetic data that shows a good reproduction of 
the predefined air change distribution used to generate the 
synthetic data. Further demonstration includes the test runs on 
real CO2 datasets measured in the kitchen and the sleeping room 
of two residential buildings. The derived air change rates were 
within typical expected ranges in both cases, when mechanical 
or natural ventilation was used. 

The promising results suggest a continuation of the research 
on further improvements of the algorithm for an even more 
robust and precise detection of exponential sections. Additional 
self-adapting strategies would reduce the number of parameters 
which need to be set manually. The determination of very high 
air change rates when only fits with short lengths are available 
also presents a future challenge. Moreover, the performance of 
the method should be assessed with extended experimental data. 

The use case for automatic detection of air change rates can 
further improve ventilation control strategies and substantially 
reduce the efforts in air change investigations. Furthermore, the 
evaluation of automatically detected equilibrium concentrations 
may enable conclusions on the current occupancy or provide 
new calibration strategies for CO2 sensors used in environments 

that rarely reach ambient CO2 concentrations. In principle, the 
concept of exponential fitting can be adopted to every physical 
process based on a simple balance equation, addressing a huge 
field of technical applications. 
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