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A recommendation for suitable
technologies for an indoor farming
framework
C. Gnauer, H. Pichler, C. Schmittner, M. Tauber, K. Christl, J. Knapitsch, M. Parapatits

Facing food insecurity and overuse of resources due to effects of climate change, humanity needs to find new ways to secure food
production and produce close to consumers. Vertical farming, where plants are grown in vertical arrays inside buildings with help
of Information and Communication Technology (ICT) components, could contribute to solving this issue. Such systems integrate
heterogeneous devices on different computing layers and acquire a lot of data to monitor and optimize the production process. We
created an indoor testing unit in which growing conditions can be monitored and controlled to optimize growth of microgreens. This
setup includes an Indoor Farming Support as a Service (IFSaaS) prototype that provides safe and secure monitoring and controlling,
as well as self-adaption of an indoor farming system. In this article we provide information about the combination of most suitable
technologies.

Keywords: vertical farming; indoor farming; IoT; cloud computing

Eine Empfehlung für geeignete Technologien für einen Indoor-Farming-Rahmen.

Angesichts der Ernährungsunsicherheit und des übermäßigen Ressourcenverbrauchs aufgrund der Auswirkungen des Klimawandels
muss die Menschheit neue Wege finden, um die Lebensmittelproduktion zu sichern und in der Nähe der Verbraucher zu produzieren.
Die vertikale Landwirtschaft, bei der Pflanzen mithilfe von Komponenten der Informations- und Kommunikationstechnologie (IKT) in
vertikaler Anordnung innerhalb von Gebäuden gezüchtet werden, könnte zur Lösung dieses Problems beitragen. Solche Systeme inte-
grieren heterogene Geräte auf verschiedenen Rechenschichten und erfassen viele Daten, um den Produktionsprozess zu überwachen
und zu optimieren. Wir haben eine Indoor-Testeinheit entwickelt, in der die Wachstumsbedingungen überwacht und gesteuert werden
können, um das Wachstum von Microgreens zu optimieren. Dieses Setup beinhaltet einen IFSaaS-Prototyp (Indoor Farming Support
as a Service), der eine sichere Überwachung und Steuerung sowie die Selbstanpassung eines Indoor-Farming-Systems ermöglicht. In
diesem Artikel informieren wir Sie über die Kombination der am besten geeigneten Technologien.
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1. Introduction
In the upcoming years the world population will grow steadily up
to an estimated world population of 9.78 billion peak in 2064, yet
decrease after that to 8.88 billion at the end of the century [1].
At the middle of the century about two thirds will live in urban
areas [2]. This poses the issue to securely supply a growing num-
ber of people with food and imposes a great threat to food se-
curity for certain countries and especially for large cities. Several
initiatives are targeted at this issue and one in particular, called
vertical farming is discussed in this paper. This form of farming
grows plants in vertical arrays, inside buildings, where growing con-
ditions are optimized. Plants are supplied with nutrients via a spe-
cific solution and with artificial lighting and can thus be grown
year round. Said method is able to grow without soil, natural sun-
light and can therefore artificially create optimal growth condi-
tions. With the help of Information Technology (IT) and Internet
of Things (IoT) components, the environment can be observed and
adapted in a corrective way to create desired environmental param-
eters.

Vertical farming reuses resources more sustainably as water and
nutrients can be reused and fewer fertilizers and no pesticides are
needed [3], [4]. Food supply chains, often global, produce vast

amounts of CO2 by transporting essential foods to large or remote

cities. Indoor farming would tackle this form of emitting greenhouse
gases through locally producing required food [5]. Shorter ways

from harvesting to consumer can be achieved. We thus present a

framework and indoor farming setup that addresses these issues. In
our work we established a highly automated testing unit that allows

for production of microgreens and other plants, e.g. salads. In our
setup we focus on aeroponic [6] and deep water culture (DWC) [7]

growing methods and how production processes can be optimized.

To investigate approaches to optimize the growing methods and to
evaluate optimization processes we established a testing environ-

ment at University of Applied Sciences Burgenland.
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Fig. 1. Indoor Farming Support as a Service (IFSaaS) model

The paper is structured as follows: Sect. 2 gives an overview of
related work, Sect. 3 introduces the indoor farming service we es-
tablish in the project. Sect. 4 describes the infrastructure setup we
created for testing purposes and Sect. 5 concludes the paper.

2. Related work
The topic of vertical farming, e.g. aeroponic is not new [8]. On the
other hand, its present state which uses IT and especially IoT to mon-
itor and control growth, is a rather recent development. Smart farm-
ing in general, with fine granular monitoring and control is only en-
abled by the introduction and wide-spread usage of Information and
Communication Technology (ICT) solutions like sensor networks [9].
This allows for an optimization of the complete process. Combining
this with vertical farming enables better use of space and thus out-
put per square meter [10]. Therefore vertical farming approaches are
also summarily called “Zero-Acreage Farming”. This is especially im-
portant due to the increasing trend of urbanization. At the current
point cities take up 2% of the earth surface, but require 75% of the
available resources. Vertical farming is able to solve multiple issues,
from a reduction in the resource usage to minimizing transporta-
tion costs [11]. Plants can be directly produced where they are con-
sumed, in vertical buildings and throughout the year. Consequently,
the large amount of fossil fuels consumed while transporting foods
from rural farming areas can be reduced [12]. This requires localized
vertical farming approaches with an optimization of the production
output while minimizing required resources and space. One possible
automation approach is autonomic management which we have al-
ready applied in related areas [13].

Newly projects often focus on holistic approaches that include not
only farming technology but rather building design and structure
and societal factors for acceptance of vertical farming projects [12].
Another factor is that agricultural land can be substituted and used
to restore natural landscape and allow for much needed ecosystems
to evolve [10]. Vertical farming technologies exist but still many fac-
tors rely on experience.

3. Indoor Farming Support as a Service (IFSaaS)
The target of the project Agri-Tec 4.01 is to design and construct a
cloud-based control system that provides a self adapting, yet safe
and secure service for indoor farming. The goal is to develop an In-
door Farming Support as a Service(IFSaaS) prototype that allows for
a safe and secure integration of multiple heterogeneous devices and

1https://www.forschung-burgenland.at/it/agritec/, accessed 29.07.2020.

optimization of the growing process. The service is focused on secu-
rity aspects of IoT systems and thus integrations of a large amount
of constrained devices. These measure and further control environ-
mental conditions such as temperature, wind, etc. The cloud system
enables integration of multiple sites and focuses on multitenancy,
self-adaption of the growing units and scalability of the overall sys-
tem. Setting it up in this way also allows to have a localized produc-
tion (e.g. near consumption points) with a centralized and overarch-
ing control for multiple sites. The model for the IFSaaS is presented
in Fig. 1.

For this purpose a combination of different computing layers are
used. The upmost layer is the cloud layer that inhabits servers for
data storage and controlling of underlying systems as well as for
setting up a Virtual Private Network (VPN). The underlying layer is
comprised of edge routers in the form of Raspberry Pi Model 4’s2

that contain ioBroker3 and Node-Red.4 These allow for data pro-
cessing and storage. The last layer comprises of various fog nodes in
the form of microcontrollers, e.g. Merkurboard,5 that measure and
control the environment parameters via sensors and actuators. For a
visual depiction see Fig. 2.

4. Evaluated and combined technology for indoor farming
In this section we present our test environment for indoor farm-
ing in which we integrated a set of evaluated technologies. A black
box, nicknamed Cubus, with dimensions of approximately 2.5x3x2.5
(length x width x height) meters was designed and constructed at
the premises. It essentially embodies a closed environmental cham-
ber in which optimal conditions for indoor farming are established.
Moreover, the Cubus contains the necessary IT and IoT infrastruc-
ture. A steel framework represents the basis and is supported and
coated by textured coated boards. Each side contains three steel
frames that can be opened up like doors and that are coated with
a water-repellent fabric to allow for humidity to be kept inside the
Cubus. The floor again consists of water-repellent material in case
water leaks. On one side there are two shelves which contain IT, IoT
and other technical infrastructure (screens) and growing equipment.
There are also four deep water culture beds for growing salads. A

2https://www.raspberrypi.org/products/raspberry-pi-4-model-b/, accessed
29.07.2020.

3https://www.iobroker.net/, accessed 14.07.2020.

4https://nodered.org/, accessed 14.07.2020.

5https://www.iot-shop.at/products/merkurboard, accessed 14.07.2020.
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Fig. 2. Schematic of computing layers in AgriTec 4.0

mobile air condition system, ventilators and humidifiers ensure de-
sired humidity and temperature.

The current IT infrastructure setup consists of a router, a switch,
an edgerouter (Raspberry Pi 4), multiple constrained devices and the
AgroRobot [8]. For remote visual inspections, a Raspberry Pi camera
was installed to display the growing beds. The constrained devices,
e.g. Merkurboards, are attached on the growing beds. These boards
are battery powered devices that use ContikiOS [14], [15] as an op-
erating system and communicate wirelessly with IEEE 802.15.4,6 or
6LoWPAN [8]. This protocol enables low energy communication over
IPv6. The Constrained Application Protocol (CoAP) is further used as
it uses URIs similar to HTTP and is ideal for machine to machine
(M2M) communication [16]. Routing Protocol for Low power and
Lossy Networks (RPL) [17] is used for the mesh network setup to
enable fault-tolerant communication if individual nodes fail. Rasp-
berry Pi 4s act as edgerouters for the Merkurboards and process
the sensory data to the cloud system. For control aspects of the
IFSaaS we implemented ioBroker.7 It is a widely used and robust
open source IoT platform with multiple ready to use interfaces. In
combination with Node-RED, a rapid prototyping tool, it allows us
to design and implement control loops for self-adaption. These are
designed to optimize the growing process inside the cubus, by pro-
cessing continuous measurements of environmental factors like hu-
midity, temperature, wind, etc. and activating measures to influence
them, e.g. turn on humidifier. Another possible technology for se-
cure and trustworthy communication of the IoT Components is the
Arrowhead Framework [18].

A robotic appliance, named AgroRobot, made of a 3D printer
motor and food-safe components inhabits six 3D printed growing
trays for microgreens. This aeroponic system uses a vertically mov-
ing spraying lance to water plant roots with nutrient solution. It is
currently controlled by an Arduino Nano8 and further operates the
water pump and artificial lighting of the setup. The AgroRobot can
further be controlled via a touchscreen. The visual setup was de-

6http://www.ieee802.org/15/pub/TG4.html, accessed 14.04.2020.

7https://www.iobroker.net/, accessed 14.07.2020.

8https://store.arduino.cc/arduino-nano, accessed 14.04.2020.

Fig. 3. Seeding of microgreens in AgroRobot, in background deep
water culture(DWC) beds with salad

signed with Nextion.9 For a picture of AgroRobot inside the Cubus
see Fig. 3.

5. Conclusion
Taking into account the progress and optimization enabled by the
application of ICT, which complements the benefits of vertical farm-
ing there is a huge potential regarding environmental protection. In
addition, climate change has the potential to threaten food secu-
rity due to a more dynamic and unforeseeable climate [19]. Vertical
farming with the independence from natural climate has here not
only the potential to minimize the footprint of food production and
to optimize the output for a given set of resources but also to sta-
bilize food production. With investigating optimization approaches
for vertical farming we support this approach in the future even
more. The presented infrastructure will not only help us to evaluate
optimization processes but also help others in reproduction for ver-
tical farming setups. In the future, systems beyond aeroponics, e.g.
aquaponic should also be investigated and their integration in the
IFSaaS.

9https://nextion.tech/, accessed 15.07.2020.
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