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ABSTRACT: Minimizing the energy consumption of residential buildings while providing maximal 
thermal comfort is a current challenge. In this paper a smart home management system is proposed 
which is able to globally optimize the thermal and electrical systems of a modern smart home, instead 
of locally optimizing each subsystem alone. !e used controller consists of a mixed-integer quadratic 
program (MIQP) implemented into a model predictive controller (MPC) scheme. !e MIQP-MPC is 
capable of handling multiple energy sources, respecting external grid-based constraints, as well as han-
dling the electrical heating systems. Furthermore, extensive disturbance prediction methods for the most 
influencing external and internal disturbances of a smart home are presented. !ose disturbances are 
ambient temperature, solar irradiation and occupancy. With the predictions of the future occupancy, the 
MIQP-MPC is also able to heat the building only when needed. !e MIQP-MPC can help future smart 
grids to reduce the peak loads and can act as an energy storage, if grid-side energy production is high. 
Another feature of the proposed controller is a simple-to-use interface for the end-user. !is interface 
enables the end-user to tune the controller in an intuitive way to their individual demands. !erefore, 
the end-user is able to balance the partially conflicting goals of the MIQP-MPC. !ose goals are the 
reduction of running costs, the maximal usage of renewable energy sources, and the minimization of the 
temperature deviation from the set point.

1. INTRODUCTION

!e building sector accounts for 20 % to 40 % of the energy consumption, where one-third of this con-
sumption attributes to heating and cooling. Model predictive control (MPC) can achieve considerable re-
ductions in energy consumption while also enabling the integration of smart homes into future smart grids.

Smart grids are necessary, because residential loads are to scale responsible for seasonal and daily peak 
demands in power consumption. About 20 % of the power generation capacity is only used for meeting the 
peak demands that occur approximately 5 % of the time. With the usage of demand response schemes the 
peak power demand can be decreased and the energy consumption can be linked to the energy production 
capacities. !e authors of (Haider et al., 2016) highlights the need for demand response schemes in the 
future. In general, two different approaches are considered: “incentive based” and “price based” demand 
responses. !e first one is invasive as the utility company has direct access to customer appliances and con-
trols them directly. !e second approach offers the customers time-varying rates that reflect the abundance/
scarcity of energy. !is schedule shifts the decision-making power towards the consumer and rewards those 
who optimize their energy consumption according to the situation present in the grid. 

Modern smart homes are more often equipped with photovoltaic (PV) systems and residential battery 
systems. Optimally managing those systems under the constraints imposed by the previously mentioned 
smart grids is difficult. Managing additional household appliances or scheduling the usage times of those 
appliances further adds complexity to the problem. As soon as discrete variables (ON/OFF states, discrete 
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starting times, etc.) are present in the optimization criterion, a mixed-integer solver is needed. An advan-
tage of MPC schemes, opposed to traditional control schemes, is that they can be used with mixed-integer 
problem statements.

Another advantage of MPC schemes is the ability to utilize predictions of the future conditions in the 
controller to pre-emptively react to these future conditions. !is allows the MPC to look ahead and plan 
an optimal trajectory, instead of just reacting to the current conditions. !e ability of the MPC to pre-
emptively react is of course dependent on the quality of the available predictions. By improving the quality 
of these predictions, the overall performance of the MPC will also improve. !e only major disadvantage 
of MPC are the relative high computational cost for calculating the future inputs. With the installation of 
more powerful hardware in home automation systems and the usage of more efficient algorithms for opti-
mizations, the high computational cost for calculating the future inputs is not a limiting factor anymore. 
For even more computational expensive tasks, cloud solutions could be used, since literally all modern 
smart home systems are connected to the internet.

Traditionally, smart home controllers are also responsible for providing a comfortable indoor climate. 
Usually the end-user defines a static reference temperature according to their preferences. While holding the 
defined reference temperature during the whole day guarantees maximum user comfort, it is not necessary 
during the times the user is not at home. If the smart home controller would know when it is not going to 
be occupied, it could minimize the needed energy for heating/cooling while remaining near maximum user 
comfort. While assuming a price-based demand response scheme in the smart grid also adds a monetary 
aspect to the heating/cooling task. For example could it be beneficial to overheat the smart-home during the 
time the user is not at home if the energy-prices are low during that time. !is, of course, is in direct conflict 
to the goal of minimizing the overall energy consumed. !erefore, the smart home managing system has to 
balance partially conflicting goals against each other. 

In this paper a smart home management system is presented that is capable of achieving globally op-
timal performance with respect to the electrical system and also the thermal system. !e presented system 
also takes advantage of sophisticated self-learning occupancy predictions to minimize the energy consump-
tion while providing full user comfort. !e rest of the paper is structured as following: Section 2 gives an 
overview over the modelling processes. Section 3 illustrates the MPC scheme, used in the smart home man-
agement system and provides an example on how the user can balance the conflicting optimization goals. 
!e 4th Section highlights the methods to gather the various predictions, which are necessary for the MPC. 
Section 5 concludes the paper and gives a brief outlook.

2. MODELLING

In this section the modelling process of the building is presented. Since the proposed smart home manage-
ment system is not only responsible for the heating/cooling tasks in the building, but also responsible for the 
power management, the model has to incorporate both the thermal and electrical behaviour of the building. 
In this work an electrical heat pump was chosen as primary heating system for the building, which couples 
the thermal model to the electrical model. !e user places constraints/demands on both the electrical and 
the thermal sub model (e.g. scheduling the household appliances or placing a constraint on the indoor 
temperature). Fig. 1 gives an overview of the modelled components and their interactions.

2.1 THERMAL SMART HOME MODEL
Creating a suitable model for a building automation is one of the most time-consuming parts (Privara, 
2013). Deriving a first principle model is not only a time and cost intensive task, but also prune to errors 
since a completely new model has to be created for every individual building. A much faster and simpler ap-
proach is to model the characteristics with low order models and parametrize them via black-box methods 
(Killian et al., 2015). !is also allows for automated adaption schemes for the smart home management sys-
tem, which greatly simplifies the commissioning process and reduces potential errors (Killian et al., 2018a). 
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!e thermal model of the building is assumed to be an ordinary discrete-time linear time-invariant state-
space system of second-order, as given by:

Note that uk is the input or manipulated variable, in this work the supply temperature of the heating system, 
and zk is the input disturbance vector. !e considered disturbances are ambient temperature, solar irradia-
tion and occupancy. Occupancy not only includes the emitted body-warmth of the users but also the heat 
emitted by the electrical appliances that they might operate. !e output yk is the indoor room temperature 
of the smart home. !e matrices of the state-space system are given as the system matrix A, the input matrix 
B, the output matrix C, and the disturbance matrix E, while the state vector is given as xk. For a more in-
depth description of the model and the modelling process, the reader is redirected to (Killian et al., 2018a). 

2.2 ELECTRICAL SMART HOME MODEL
As mentioned before, not only the homes will become smarter in the future, but also the grids supplying 
those. !erefore, the grid was modelled with variable prices for buying/selling energy and limits for the 
amount of power the smart home is allowed to draw/sell. Furthermore, a battery storage is included in the 
model, as well as a renewable energy source in the shape of a PV system with a PV converter. !e internal 
electric load of the smart home is separated in shift-able loads and non-shift-able loads. !e shift-able loads 
are for example the power draw of the electrical heat pump, a smart freezer or a dishwasher. !e dishwasher 
in this example represents a non-interruptible schedulable load for which the MIQP-MPC will optimize 
the starting time, subject to a user defined latest activation time. Fig. 2 shows the individual components 
of the electrical subsystem and their connections. Furthermore, Fig. 2 introduces the variables (power 
sold to the grid) and  (power consumed from the grid),  (power discharged from the battery) and 

 (power charged into the battery) as well as (power generated by the PV system) and (power 
consumed by the smart home).

For a more detailed description of the model and the modelling process, see (Killian et al., 2018a).

Fig. 1: Overview of the modelled components and their interactions. 
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3. MODEL PREDICTIVE CONTROL SCHEME

!e MPC scheme in the smart home management system is formulated as a MIQP problem. !is enables 
the management system to optimally manipulate and schedule continuous variables as well as discrete vari-
ables. !e overall idea of the specific control structure is illustrated in Fig. 3. !e plant has been discussed in 
detail in Section 2. In this work it is assumed that a PV system complements the electrical part of the plant. 

!e manipulated variables u*, generated by the MIQP-MPC, are the inputs for the electric plant as well 
as for the heat pump (heat supply temperature). !e output of the plant is the indoor temperature act, as 
well as the raw data for the occupancy prediction described in Section 4.2. 

!e inputs for the MIQP-MPC are the reference temperature set by the user ref, the user weights, the 
energy prices gbuy and gsell of the smart grid, various measurements from within the smart home, and the 
result of the occupancy prediction.

!e aforementioned user weights are used to tune the conflicting optimization goals in the global opti-
mization criterion of the MIQP-MPC given by:

!e weighting matrices define a trade-off between comfort (Q), monetary cost (S), and energy effi-
ciency (P) of the smart home. !e constant value R is used to weight the rate of change of the manipulated 
variables.

!is trade-off can also be visualized by a triangle as shown in Fig. 4. !e end-user can select an inte-
rior point of the triangle. !e closer the point is to one of the edges, the more this goal is prioritized. !is 
selection process is simple and user-friendly, and no complicated or abstract numerical figures are needed. 

If the user would select a point near the…
 ‘eco’ corner, the MPC would prioritize the usage of renewable energy (smart home PV system). !is is 
done by penalizing the amount of power consumed from the grid.
‘cost’ corner, the MPC would try to minimize the monetary cost of operating the smart home. !is is 
done by penalizing the cost of buying power from the grid, but also by rewarding selling power to the grid. 
 ‘comf ’ corner, the MPC would maximise the user comfort. !is is done by penalizing the quadratic 
deviation from the reference temperature defined by the user. 

Fig. 2: Scheme of the electrical smart home model and its components.
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Another advantage of using the proposed control scheme is that lower and upper boundaries for the indoor 
temperature can be defined as constraints for the MIQP problem. !ose bounds for the admissible indoor 
temperature could depend on the predicted occupancy of the smart home, allowing larger deviations from 

Fig. 4: Graphical end-user interface for selecting the individual weights.

Fig. 3: Schematic control structure of the smart home MPC and the plant structure.
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the reference temperature if nobody is/will be at home. !is anticipatory heating behaviour can yield large 
potential energy savings without any impact on user comfort.

4. DISTURBANCE PREDICTIONS

A major influencing factor for the performance of a MPC are the quality of the available predictions. In this 
section only the predictions for the disturbance vector z_k from (1a) are considered. Other predictions, like 
grid-prices or grid-side constraints, are assumed to be known and not discussed further in this paper. In the 
following subsections methods for acquiring those disturbance predictions are presented.

4.1 WEATHER PREDICTIONS
As mentioned in the introduction, the major influencing factors for the thermal model are ambient temperature 
and solar irradiation. Long-time forecasts of both are easily accessible and widely available, but those forecasts do 
not account for local conditions. For example, a house could be in the shade of large trees most of the day and 
only be subjected to a fraction of the solar irradiation predicted by external weather forecasting services. 

Local sensors for capturing the weather are already standard in today’s smart homes. Combining those local 
sensors with the external weather forecasts can lead to an improved localized prediction (Zauner et al., 2018). 

!e aforementioned paper proposed an autoregressive model with exogenous inputs for combining external 
predictions with local sensor readings. !e model employs a weighted recursive least-squares algorithm to 
adapt the model-parameters online. !is allows the model to adaptively capture the statistically differences 
between the local conditions on-site and external predictions. 

It has been shown that this algorithm can be used for creating a localized prediction for ambient tem-
perature and (with minor adaptions) for solar irradiation, see Fig. 5.

4.2 OCCUPANCY PREDICTIONS
In Section 3 the potential advantages of having predictions about the future occupancy have been high-
lighted. Assigning the end-user to manually define the times where the smart-home will be occupied is an 
annoying and time-consuming task. Killian & Kozek (2018b) proposed an algorithm for semi-automated 
extraction of occupancy profiles based on internal sensor measurements in the smart home. 

Fig. 5: Overview of the work for generating the localized predictions.
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In a first step the daily occupancy probability of the end-users are recorded over a certain period of time. 
In a second step the most significant “features” (best describing occupancy profiles) are extracted offline. 
!is feature extraction is done by performing a proper orthogonal decomposition (POD) and subsequently 
clustering the data. Performing the POD and clustering is computationally challenging, but it is sufficient 
to carry out these calculations only once every few months. !erefore, this task can be easily outsourced to 
cloud-computational services. 

In a third step the extracted occupancy profiles are compared online to the current occupancy condi-
tions via a robust statistical measure. !e best fitting pre-extracted occupancy profile is chosen for predict-
ing the future occupancy. 

For a more in-depth description of the algorithm and additional figures, the reader is redirected to (Kil-
lian & Kozek, 2018b).

5. CONCLUSION AND OUTLOOK

A smart home management system is presented in this work. !e management system does not only in-
clude the thermal subsystem of the smart home, to be able to provide a comfortable climate, but also the 
electrical subsystems to optimize the usage of battery-systems and grid-based power with respect to the 
power demand of the heating systems. !is optimization problem is solved via computing a mixed-integer 
quadratic-programming problem.

!e proposed MPC scheme is able to optimally help future smart grids with tasks like load scheduling 
and reducing peak loads, while also providing the user full comfort during those tasks. Furthermore, more 
sophisticated methods for gathering necessary predictions are presented. !ose predictions include local-
ized weather forecasts and occupancy predictions. !e occupancy profiles are generated semi-automated via 
means of datamining and efficient feature extraction from big data. 

!e proposed algorithms and methods are in the progress of being implemented into real building for 
testing purposes. Future updates on the results including performance figures will be provided by the au-
thors. For numerical simulation results and proof-of-concept results, see (Killian, 2018a; Killian & Kozek, 
2018b; and Zauner et al., 2018).
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